期刊文献+

增强LCL型并网逆变器对电网阻抗鲁棒性的控制参数设计 被引量:46

Controller Design for LCL-type Grid-connected Inverter to Achieve High Robustness Against Grid-impedance Variation
下载PDF
导出
摘要 电容电流反馈有源阻尼是抑制并网逆变器中LCL滤波器谐振的有效方式。然而,由于实际电网存在变化的电网阻抗,LCL滤波器的谐振频率会在宽范围内变化,使得电容电流反馈系数的选取变得困难。特别地,当谐振频率等于1/6的采样频率(fs/6)时,无论选取多大的电容电流反馈系数,系统都无法稳定。研究适应电网阻抗宽范围变化的电容电流反馈系数的设计方法,针对不同的谐振频率,推导出系统稳定时的幅值裕度要求,通过分析电网阻抗对幅值裕度的影响,得到最优的电容电流反馈系数。采用这个反馈系数时,除了谐振频率等于fs/6之外,系统都能保持稳定。进一步地,为了提高谐振频率等于fs/6时系统的稳定性,提出环路增益的相位滞后补偿方法。最后,在一台6 k W的原理样机进行实验验证,实验结果证明了理论分析的正确性。 Capacitor-current-feedback active damping is an effective method to suppress the LCL-filter resonance in the grid-connected inverters. However, due to the variation of grid impedance, the LCL-filter resonance frequency will vary in a wide range, which challenges the design of capacitor current feedback coefficient. Moreover, if the resonance frequency is equal to one-sixth of the sampling frequency fs/6), the system can hardly be stable no matter how much the capacitor current feedback coefficient is. In this paper, the optimal design of capacitor current feedback coefficient is presented to deal with the wide range variation of grid impedance. First, the gain margin requirements for system stability are derived under various resonance frequencies. By evaluating the effect of grid impedance on the gain margins, an optimal capacitor current feedback coefficient is obtained. With this feedback coefficient, stable operations will be retained for all resonance frequencies except fs/6. Second, in order to improve system stability for the resonance frequency of fs/6, a phase-lag compensation for the loop gain is proposed. Finally, a 6-kW prototype is tested to verify the effectiveness of the design procedure.
出处 《中国电机工程学报》 EI CSCD 北大核心 2015年第10期2558-2566,共9页 Proceedings of the CSEE
基金 国家自然科学基金项目(50837003 51007027) 江苏省333高层次人才培养工程专项资助(BRA2012141) 中央高校基本科研业务费专项资助(YAH12012)~~
关键词 并网逆变器 LCL滤波器 有源阻尼 控制延时 电网阻抗 grid-connected inverter LCL filter active damping control delay grid impedance
  • 相关文献

参考文献21

  • 1Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of control and grid synchronization for distributed power generation systems[J]. IEEE Trans. on Industrial Electronics, 2006, 53(5): 1398-1409.
  • 2潘冬华,阮新波,王学华,鲍陈磊,李巍巍.并网逆变器中LCL滤波器的磁集成[J].中国电机工程学报,2013,33(6):67-75. 被引量:9
  • 3HanifM, Khadkikar V, Xiao W, et al. Two degrees of freedom active damping technique for LCL filter-based grid connected PV systems[J]. IEEE Trans. on Industrial Electronics, 2014, 61(6): 2795-2803.
  • 4AlzolaR, LiserreM, BlaabjergF, etal. Analysis of the passive damping losses in LCL-filter-based grid converter [J]. IEEE Trans. on Power Electronics, 2013, 28(6): 2642-2646.
  • 5Miihlethaler J, Schweizer M, Blattmann R, et al. Optimal design of LCL harmonic filters for three-phase PFC rectifiers[J]. IEEE Trans. on Power Electronics, 2013, 28(7): 3114-3125.
  • 6Li Y. Control and resonance damping of voltage-source and current-source converters with LC filters[J]. IEEE Trans. on Industrial Electronics, 2009, 56(5): 1511-1521.
  • 7Hatua K, Jain A, Banerjee D, et al. Active damping of output LC filter resonance for vector-controlled VSI-fed AC motor drives[J]. IEEE Trans. on Industrial Electronics, 2012, 59(1): 334-342.
  • 8Mohamed Y, Rahman M, Seethapathy R. Robust line- voltage sensorless control and synchronization of LCL- filtered distributed generation inverters for high power quality grid[J]. IEEE Trans. on Power Electronics, 2012, 27(1): 87-98.
  • 9He J, Li Y. Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with LC or LCL filters[J]. IEEE Trans. on Power Electronics, 2012, 27(4): 1850-1861.
  • 10Bao Chenlei, Ruan Xinbo, Wang Xuehua, et al. Step- by-step controller design for LCL-type grid-connected inverter with capacitor-current-feedback active-damping [J]. IEEE Trans. on Power Electronics, 2014, 29(3): 1239-1253.

二级参考文献21

  • 1赵修科.实用电源技术手册磁性元器件分册[M].沈阳:辽宁科学技术出版社,2002..
  • 2Blaabjerg F,Teodorescu R,Liserre M,et al.Overview of control and grid synchronization for distributed power generation systems[J].IEEE Trans.on Industrial Electronics,2006,53(5):1398-1409.
  • 3Liserre M,Blaabjerg F,Hansen S.Design and control of an LCL-?lter-based three-phase active recti?er[J].IEEE Trans.on Industry Applications,2005,41(5):1281-1291.
  • 4Wang T,Ye Z,Sinha G,et al.Output ?lter design for a grid-interconnected three-phase inverter[C]//IEEE Power Electronics Specialists Conference.Acapulco,Mexico: IEEE,2003:779-784.
  • 5Jalili K,Bernet S.Design of LCL filters of active- front-end two-level voltage-source converters[J].IEEE Trans.on IndustrialElectronics,2009,56(5):1674-1689.
  • 6Zumel P,Garcia O,Cobos J,et al.Magnetic integration for interleaved converters[C]//IEEE Applied Power Electronics Conference.Florida:IEEE,2003:1143-1149.
  • 7Chen W,Lee F,Zhou X,et al.Integrated planar inductor scheme for multi-module interleaved quasi-square-wave (QSW) DC/DC converter[C]//IEEE Power Electronics Specialists Conference.South Carolina:IEEE,1999:759-762.
  • 8Yang B,Chen R,Lee F.Integrated magnetic for LLC resonant converter[C]//IEEE Applied Power Electronics Conference.Queensland,Australia:IEEE,2002:346-351.
  • 9Wong P,Xu P,Yang B,et al.Performance improvements of interleaving VRMs with coupling inductors[J].IEEE Trans.on Power Electronics,2001,16(4):499-507.
  • 10Zhu G,McDonald B,Wang K.Modeling and analysis of coupled inductors in power converters[J].IEEE Trans.on Power Electronics,2011,26(5):1355-1363.

共引文献8

同被引文献287

引证文献46

二级引证文献316

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部