期刊文献+

基于Web挖掘的新股破发原因探究及预测 被引量:2

Study on the reason and prediction for IPO underpricing in Chinese GEM based on Web mining technique
下载PDF
导出
摘要 近年来我国创业板股市频繁出现新股破发现象,暴露出创业板市场存在的风险问题。基于行为金融学及有限注意力理论,运用Web挖掘手段和机器学习算法分析股票论坛投资者的文本评论和搜索行为,建立投资者情绪和投资者关注指数,对创业板新股破发进行定量化实证研究。结果表明,除了市场指标、发行指标、机构参与指标和财务指标,从股票论坛和搜索引擎获取的投资者情绪和关注也是影响创业板股票破发的重要因素,据此建立的新股破发预测模型平均准确率达90%。 In recent years, lots of new shares in GEM break on the first trading day, which shows the inefficiency of the IPO pricing in GEM. Based on behavioral finance and limited attention theory, we analyze investors' online review and search queries with Web mining technique, then do empirical study on the determinants for IPO pricing in Chinese GEM from the perspective of investors' sentiment and attention. The result shows that apart from traditional financial factors, investors' sentiment and attention indexes are also important factors influencing IPO underpricing. The accuracy of the prediction model reaches 90%.
出处 《微型机与应用》 2015年第10期58-60,共3页 Microcomputer & Its Applications
关键词 WEB挖掘 新股破发 机器学习 支持向量机 朴素贝叶斯 Web mining IPO underpricing machine learning support vector machine(SVM) naive Bayes(NB)
  • 相关文献

参考文献3

二级参考文献31

共引文献51

同被引文献19

  • 1陈悦,陈超美,刘则渊,胡志刚,王贤文.CiteSpace知识图谱的方法论功能[J].科学学研究,2015,33(2):242-253. 被引量:7180
  • 2Cronin B,Atkins H B.The web of knowledge:a festschrift in honor of Eugene Garfield.Medford:Information Today,2000.
  • 3Chen Chaomei.Cite Space II:Detecting and visualizing emerging trends and transient patterns in scientific literature[J].Journal of the American Society for Information Science and Technology,2006,57(3):359-377.
  • 4Engle RF.Autoregressive conditional heteroscedasticity with estimates of the variance of U.K.inflation[J].Econometrica,1982(50):987-1008.
  • 5Bailon-Moreno R,Jurado-Alameda E,Ruiz-Banos R.Analysis of the field of physical chemistry of surfactants with the unified scienctometric mode l fit of relational and activity indicators[J].Scientometrics,2005,63(2):259-276.
  • 6Belvaux G,Wolsey LA.Bc-prod:a specialized branch-and-cut system for lot-sizing problems[J].Management Science,2000,46(5):724-738.
  • 7HANAY Y S,ARAKAWA S,MURATA M.Network topology selection with multistate neural memories[J].Expert Systems with Applications,2015(42):3219-3226.
  • 8Chen Rudi,BEEK P V.Improving the accuracy and low-light performance of contrast-based autofocus using supervised machine learning[J].Pattern Recognition Letters,2015,56(C):30-37.
  • 9AMIN M J,RIZA N A.Active depth from defocus system using coherent illumination and a no moving parts camera[J].Optics Communications,2015,359:135-145.
  • 10秦长江,侯汉清.知识图谱——信息管理与知识管理的新领域[J].大学图书馆学报,2009,27(1):30-37. 被引量:289

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部