期刊文献+

基于多尺度特征近似计算的行人检测方法

A Method for Pedestrian Detection Based on Fast Feature Computation
下载PDF
导出
摘要 传统的多尺度特征计算都是首先构造不同尺度的图像形成图像金字塔,然后在金字塔每一层上通过滑动窗口的办法提取相应的特征,实验表明在目标检测时特征提取消耗大量时间,改善特征提取的速度是提升目标检测速度的关键。本文使用FFC(Fast Feature Computation)计算方法对多尺度图像特征进行快速提取,同时结合Adaboost算法和多特征融合方法用于行人目标检测,实验结果表明效果较好。 Traditional multi-scale feature extraction method for pedestrian detection firstly constructs image pyramid and then extracts corresponding features by sliding window method. The experiment reflects that it costs much time on feature extraction while we detect pedestrians. What we have to do is improving feature computation speed while does not matter detection perfor-mance. This paper proposes FFC(Fast Feature Computation) method for feature extraction and makes use of Adaboost algorithm and multi-features merge. Experimental results show that the effect is better.
作者 崔剑 侯晓荣
机构地区 电子科技大学
出处 《电脑与电信》 2015年第4期50-52,65,共4页 Computer & Telecommunication
关键词 图像金字塔 滑动窗口 FFC ADABOOST 多特征融合 image pyramid sliding window method FFC Adaboost multi-features merge
  • 相关文献

参考文献11

  • 1Dalai N,Tri-s B. Histogralns of oriented bn'adients for hunaan de- tectionIC]//Conaputer Vision and Pattern tkecognition, 2005. CVPR 20115 IEEE Computer Society Conference on. IEEE,20C)5,1:886-893.
  • 2Gavrila D M. A bayesian,exemplar-ba.sed approach to hierarchical shape matching[J]. Pattern Analysis and Machine Intelligence, IEEE Trans- actions on, 2007,29(8) : 1408-1421.
  • 3Lin Z,Hua G,Davis L S. Multiple instance feature for robust part- based object detection[C]//Computer Vision and Pattern Recognition, 2009 CVPR 2009. IEEE Conference on. IEEE,2009:405-412.
  • 4Borgefors G. Hierarchical chamfer matching: A parametric edge matching algorithm[Jl. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1988,10(6) : 849-865.
  • 5Walk S, Majer N, Schindler K, et al. New features and insights for pedestrian detection[C]//Computer vision and pattern recognition (CVPR), 2010 IEEE conference on. IEEE,2010:1030-1037.
  • 6Gao W,Ai H, Lao S. Adaptive contour features in oriented granu- lar space for human detection and segmentation[C]//Computer Vision and Pattern Recognition, 2009. CVPR. 2009. IEEE Conference on. IEEE, 2(109:1786-1793.
  • 7孙锐,陈军,高隽.基于显著性检测与HOG-NMF特征的快速行人检测方法[J].电子与信息学报,2013,35(8):1921-1926. 被引量:40
  • 8Wang X, Han T X, Yan S. An HOG-LBP human detector with partial occlusion handling[C]//Computer Vision, 2009 IEEE 12th Interna- tional Conference on. IEEE,2009:32-39.
  • 9Ruderman D L, Bialek W. Statistics of natural images: Scaling in the woods[J]. Physical review letters, 1994,73(6): 814.
  • 10P, uderman D L. The statistics of natural images[J]. Network: compntadon in neural systems, 1994,5(4) : 517-548.

二级参考文献1

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部