期刊文献+

灰色模型在PM2.5预测中的应用 被引量:5

Application of Grey Model in PM2.5 Prediction
下载PDF
导出
摘要 PM2.5对空气质量和能见度等有重要的影响,了解其变化趋势,对制定合理的治理机制具有现实意义.在传统的GM(1,1)模型的基础上,提高数据的光滑度,建立了改进的GM(1,1)模型,并利用MATLAB实现GM(1,1)模型算法.以石家庄市PM2.5浓度作为研究对象,以历史数据预测未来数据,并检验其精度.结果显示,石家庄市PM2.5浓度,在短期内仍将保持较高值,采取措施控制PM2.5浓度不容忽视. PM2. 5 has an important effect on visibility and air quality etc. ,therefore,understanding its trends for the development of rational governance mechanism has the practical significance. In order to improve the prediction accuracy,based on the traditional GM(1,1)model,by increasing the smoothness of data,and u-sing MATLAB realization of GM(1,1)model algorithms,and the PM2. 5 concentrations of Shijiazhuang,the capital city of Hebei Province,as the research object,predict the future by making use of the historical data,and verify its accuracy. The prediction results show that the PM2. 5 concentrations in Shijiazhuang in the short term will remain high value;and taking soem measures to control the concentration of PM2. 5 cannot be ignored.
出处 《绵阳师范学院学报》 2015年第5期75-79,共5页 Journal of Mianyang Teachers' College
基金 河北省高等学校科学技术研究项目(Q2012122)
关键词 PM2.5 环境污染 GM(1 1)模型 MATLAB 预测 PM2.5 environmental pollution GM (1, 1) model MATLAB predict
  • 相关文献

参考文献5

二级参考文献27

共引文献85

同被引文献61

  • 1邢清华,刘付显.区域防空部署优化系统建模[J].系统工程与电子技术,2006,28(5):712-715. 被引量:33
  • 2周振民,刘荻.基于Matlab的人工神经网络用水量预测模型[J].中国农村水利水电,2007(4):45-47. 被引量:24
  • 3仲兆满,管燕.一个基于神经网络的入侵检测系统原型的开发[J].西南民族大学学报(自然科学版),2007,33(3):658-662. 被引量:1
  • 4Ye Chao, Chen Ruishan ,Chen Mingxing .The impacts of Chinese Nian culture on air pollution [J]. Journal of Cleaner Production, 2015(5).
  • 5Dore A J,Carslaw D C,Braban C, et al.Evaluation of theperformance of different atmospheric chemical transport models and inter-comparison of nitrogen and sulphur deposition estimates for the UK[J].Atmospherie Environme- nt, 2015,119(10)131-143.
  • 6Jean -Michel Poggi,Bruno Portier.PM10 forecasting using clusterwise regression[J].Atmospheric Environment, 2011,45 ( 11 ): 7005-7014.
  • 7P Viotti,G Liuti,P Di Genova. Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia[J]. Ecological Modelling, 2002,148( 2 ): 27-46.
  • 8S.M. Shiva Nagendra,Mukesh Khare.Artificial neural network based line source models for vehicular exhaust emission predictions of an urban roadway[J]. Transportation Research Part D: Transport and Environment, 2004,9 (5): 199-208.
  • 9Atakan Kurt,Ayse Bettil Oktay.Forecasting air pollutant indicator levels with geographic models 3days in advance using neural networks[J]. Expert Systems with Applications, 2010,37(12) : 7986-7992.
  • 10Zhou Qingping, Jiang Haiyan, Wang Jianzhou, et al, A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network [J]. Science of the Total Environment, 2014,496:264-274.

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部