期刊文献+

氟盐冷却球床堆球栅元少群截面计算 被引量:2

Generation of Few-group Cross Sections for Pebble-bed Fluoride-salt-cooled High-temperature Reactors
下载PDF
导出
摘要 氟盐冷却球床堆经10余年的发展,已逐步由预概念设计走向试验堆基准设计。本文采用确定论软件中的碰撞概率法模块对氟盐冷却球床堆球栅元建模,计算了其无穷增殖因数,少群均匀化总截面、俘获截面和裂变截面,并使用连续能量蒙特卡罗软件验证与分析。其中使用基于碰撞概率法的共振处理程序直接求解共振能区超精细群慢化方程,很好地处理了氟盐冷却球床堆的球型燃料元件所构成的双重非均匀系统。结果表明:确定论软件中碰撞概率法模块的计算结果与蒙特卡罗软件结果吻合,适用于对氟盐冷却球床堆进行少群截面加工。 Pebble-bed fluoride-salt-cooled high-temperature reactors (PB-FHR) have made progress to the stage of baseline designing of test reactor after more than ten-year pre-conceptual designing. Collision probability method was applied to solve the neutronic system of one pebble of PB-FHR, and attained its infinite multiplication factor and cell-homogenized few-group cross sections including total, capture and fission cross sections. The evaluation of accuracy of the output was based on comparison to a continuous-energy, doubly heterogeneous Monte Carlo reference model. Resonance calculation routine solved slowing-down equations on the ultra-fine lethargy mesh by collision probability method, through which the doubly heterogeneous system could be treated accurately. Results show that outputs from collision probability method are consistent with that of Monte Carlo reference model, and collision probability lattice code with ultra-fine resonance calculation is capable of generating few-group cross sections for PB-FHR.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2015年第B05期100-106,共7页 Atomic Energy Science and Technology
基金 中国科学院战略性先导科技专项资助项目(XDA02010200)
关键词 双重非均匀性 氟盐冷却球床堆 少群截面加工 蒙特卡罗方法 doubly heterogeneous system PB-FHR few-group cross-section generation Monte Carlo
  • 相关文献

参考文献13

  • 1FORSBERG C W, PETERSON P F, PICKARDP S. Molten-salt-cooled advanced high-tempera-ture reactor for production of hydrogen and elec-tricity[J], Nuclear Technology, 2003,144(1):289-302.
  • 2FORSBERG C,PETERSON P F,SRIDHA-RAN K. Fluoride-salt-cooled high-temperaturereactors (FHRs) for base-load and peak electrici-ty, grid stabilization, and process heat[R]. Bos-ton: Massachusetts Institute of Technology,2013.
  • 3HUDSON N H, OUGOUAG A M, RAHNE-MA F,et al. A pebble bed reactor cross sectionmethodology [ J]. Annals of Nuclear Energy,2009,36(1) : 1 138-1 150.
  • 4RUTTEN H J,HAAS K A. V S O P (99/05)computer code system for reactor physics and fuelcycle simulation[R]. Julich: ForschungszentrumJiilich, 2005.
  • 5BENDE E E, HOGENBIRK A H. Analyticalcalculation of the average dancoff factor for a fuelkernel in a pebble bed high-temperature reactor[J]. Nuclear Science and Engineering, 1999,133(1): 147-162.
  • 6GOLUOGLU S,LANDERS N F,PETRIE LM, et al. CSAS: Control module for enhancedcriticality safety analysis sequences [ R OakRidge: Oak Ridge National Laboratory, 2006.
  • 7庄坤,曹良志,吴宏春,郑友琦.球床型固体燃料熔盐堆计算软件开发[J].原子能科学技术,2013,47(B12):463-466. 被引量:5
  • 8OKUMURA K, KUGO T,KANEKO K,et al.SRAC2006 : A comprehensive neutronics calcula-tion code system[R], Ibarakiken: Japan AtomicEnergy Agency, 2007.
  • 9X-5 Monte Carlo Team. A general Monte CarloN-particle transport code, Version 5 [R]. LosAlamos: Los Alamos National Laboratory*2003.
  • 10李满仓,王侃,姚栋.基于连续能量蒙特卡罗方法的均匀化群常数计算[J].核科学与工程,2012,32(4):306-314. 被引量:4

二级参考文献25

  • 1Brown F B, Martin W R, Mosteller R D. Monte Carlo-Advances and Challenges[C]//Workshop at PHYSOR2008, 14-19 September, Interlaken, Switzerland. Los Alamos National Laboratory, 2008: 159.
  • 2Martin B. Advances in Monte Carlo Methods for Global Reactor Analysis [C}//Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C+SNA 2007), April 15-19 Monterey, California,USA. 2007.
  • 3Yesilyurt G, Martin W R, Lee J C. A Coupled Monte Carlo/Collision Probability Method for VHTR Analysis[J]. Transactions of the American Nuclear Society, 2008, 99: 753-754.
  • 4Ilas G, Rahnema F. A Monte Carlo Based Nodal Diffusion Model for Criticality Analysis of Spent Fuel Storage Lattiees[J]. Annals of Nuclear Energy, 2003, 30(10) : 1089-1108.
  • 5Van der Marck S C, Kuijper J C, Oppe J. Homogenized Group Cross Section by Monte Carlo[C]//PHYSOR- 2006 American Nuclear Society's Topical Meeting on Reactor Physics, Sept. 10-14, Vancouver, BC, Canada. Z006.
  • 6Tohjoh M, Watanabe M, Yamamoto A. Application of Continuous-energy Monte Carlo Code as a Cross-section Generator of BWR Core Caleulations[J]. Annals of Nuclear Energy, 2005, 32(8): 857-875.
  • 7Redmond IIE L. Multigroup Cross Section Generation Via Monte Carlo Methods[D]. Massachusetts Institute of Technology Dept. of Nuclear Engineering, 1997.
  • 8Rahnema F, Ilas G, Hudson N H, et al. On the Few-group Cross-section Generation Methodology for PBR Analysis[J]. Annals of Nuclear Energy, 2006, 33 (11-12): 1058-1070.
  • 9Blomquist R N. VIM Monte Carlo Neutron/Photon Transport Code[EB/OL]. [2010]. www. vim. anl. gov.
  • 10Maiorov L V. MCU Code: MCU Project Home Page [EB/OL]. [2010]. www. meu. vver. kiae. ru/eareal.

共引文献7

同被引文献2

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部