期刊文献+

分布式非预混火焰传递函数的实验研究 被引量:5

Experimental Investigation of Distributed Flame Transfer Function for Non-Premixed Flame
下载PDF
导出
摘要 非预混燃烧是动力设备和推进系统中常见的燃烧组织形式。为了理解非预混火焰的动力学特性、预测和控制其振荡燃烧现象,有必要获得其火焰传递函数。本文通过实验测量对分布式非预混火焰的传递函数进行了研究,实验对象为甲烷空气同心射流火焰。实验中使用双麦克风技术测量燃烧室出口速度脉动,作为传递函数的输入量;使用CH基自发荧光测量燃烧过程的放热率脉动,作为传递函数的输出量。搭建了卡塞格林光学测量系统,以提升放热率测量的空间分辨率,实现单点测量,进而得到一维分布式火焰传递函数。结果表明,在频域内,实验中测得的传递函数的幅值沿火焰轴向存在两个峰值,在幅值的峰谷处相位角有180°翻转,这是热斑以对流速度向下游传播,跨越火焰面时所造成的。 Combustors with non-premixed flames are widely used in propulsion and power systems. To pre-dict and control the combustion oscillation, it is crucial to understand the flame dynamics, which can be de-scribed by the flame transfer function. The one-dimensional distributed flame transfer function for a methane-air coflow non-premixed flame was investigated experimentally. The two-microphone technique and CH* chemilumi-nescence intensity measurement were used to determine the inlet-velocity perturbation and heat release oscilla-tion,which are the input and output to the flame transfer function. A Cassegrain optical system was used to im-prove the spatial resolution so that the local,temporal intensity of chemiluminescence can be measured,there-fore the one-dimensional distributed flame transfer function. The results show that in the frequency domain,the amplitude of the distributed flame transfer function has two peaks,and the angle of the distributed flame transfer function has a nearlyπshift through between two peaks. This is caused by the hot spots propagating downstream across the flame surface.
出处 《推进技术》 EI CAS CSCD 北大核心 2015年第1期1-8,共8页 Journal of Propulsion Technology
基金 国家自然科学基金(51376107) 高超声速冲压发动机技术重点实验室基金(L13178)
关键词 燃烧振荡 非预混火焰不稳定性 分布式火焰传递函数 卡塞格林光学测量系统 Combustion oscillation Instability of non-premixed flame The distributed flame transfer function Cassegrain optical system
  • 相关文献

参考文献19

  • 1Balachandran R, Ayoola B O, Kaminski C F, et al. Ex- perimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations[J]. Combustion and Flame, 2005, 143 ( 1- 2): 37-55.
  • 2Ducruix S, Durox D, Candel S. Theoretical and Experi- mental Determinations of the Transfer Function of a Lam- inar Premixed Flame [ J]. Proceedings of the Combustion Institute, 2000, 28 (1): 765-773.
  • 3Varoquie B, Legier J P, Lacas F, et al. Experimental Analysis and Large Eddy Simulation to Determine the Response of Non-premixed Flames Submitted to Acous- tic Forclng[J]. Proceedings of the Combustion Institute, 2002, 29 (Part 2): 1965-1970.
  • 4Zhaopu Yao, Min Zhu. A Distributed Transfer Function for Non-Premixed Combustion Oscillations [ J ]. Combus- tion Science and Technology, 2012, 184(6) : 767-790.
  • 5姚兆普,朱民.非预混火焰热斑产生和演化的理论计算[J].推进技术,2012,33(4):530-535. 被引量:3
  • 6Huerre P, Monkewitz P A. Local and Global Instabili- ties in Spatially Developing Flows[J]. Annual Review of Fluid Mechanics, 1990, 22: 473-537.
  • 7Tong A Y, Sirignano W A. Oscillatory Vaporization of Fuel Droplets in an Unstable Combustor[J]. Journal of Propulsion and Power, 1989, 5 (3): 257-261.
  • 8Greenberg J B, Katoshevski D. The Influence of Drop- let Grouping on a Burke-Schumann Spray Diffusion Flame in an Oscillating Flow Field [J]. Proceedings of the Combustion Institute, 2011, 33 (Part 2): 2055-2062.
  • 9Greenberg J B, Katoshevski D. Spray Flame Dynamics with Oscillating Flow and Droplet Grouping[J].Combus- tion Theory" and Modelling, 2012, 16 (2): 321-340.
  • 10Kim K T, Lee J G, Quay B D, et al. Spatially Distribut-ed Flame Transfer Functions for Predicting Dynamics in Lean Premixed Gas Turbine [J]. Combustion and Flame, 2010, 157 (9): 1718 1730.

二级参考文献13

  • 1Culick F E C. Unsteady Motions in Combustion Chambers for Propulsion Systems[ M ]. USA :RTO/NATO, 2006.
  • 2Strahle W C. On Combustion Generated Noise[J]. Jour- nal of Fluid Mechanics, 1971, 49 : 399-414.
  • 3Cumpsty N A, Marble F E. The Interaction of Entropy Fluctuations with Turbine Blade Rows; A Mechanism of Turbojet Engine Noise[ J]. Proceedings of The Royal So- ciety, Series A, 1977,357 : 323-344.
  • 4Balasubramanian K, Sujith R I. Non-Normality and Non- linearity in Combustion-Acoustic Interaction in Diffusion Flames[ J ]. Journal of Fluid Mechanics, 2005, 594 : 29-57.
  • 5Balasubramanian K, Sujith R I. Nonlinear Response of Diffusion Flames to Uniform Velocity Disturbances [ J ]. Combustion Science and Technology, 2008, 180 : 418- 436.
  • 6Tyagi M, Jamadar N, Chakravarthy S R. Oscillatory Re- sponse of an Idealized Two-Dimensional Diffusion Flame: Analytical and Numerical Study [ J ]. Combustion and Flame, 2007, 149:271-285.
  • 7Schusser M, Culick F E C, Cohen N S. Analytical Solu- tion for Pressure-Coupled Combustion Response Functions of Composite Solid Propellants[ J ]. Journal of Propulsion and Power, 2008, 24 : 1058-1067.
  • 8Duvvur A, Chiang C H, Sirignano W A. Oscillation Fuel Droplet Vaporization: Driving Mechanism for Combustion Instability[ J]. Journal of Propulsion and Power, 1996, 12:358-365.
  • 9Burke S P, Schumann T E W. Diffusion Flames[ J]. In- dustrial and Engineering Chemistry, 1928, 20: 998- 1004.
  • 10Clarke J F. The Laminar Diffusion Flame in Oseen Flow: the Stioehiometric Burke-Schumann Flame and Frozen Flow[J].Proceedings of the Royal Society A, 1967, 296 : 519-545.

共引文献2

同被引文献15

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部