期刊文献+

RP-3航空煤油着火特性的影响因素分析 被引量:9

Influencing Factor Analysis for Ignition Characteristics of RP-3 Kerosene
下载PDF
导出
摘要 为了获得RP-3航空煤油着火特性的实验数据,建立该燃料的化学反应动力学模型,在化学激波管中利用反射激波点火,采用壁面压力与OH自发光作为着火指示信号,对RP-3航空煤油/氧气/氩气混合气在着火温度范围为1100~1600K,压力分别为0.1,0.2与0.3MPa,当量比分别为0.5,1.0与1.5,燃料摩尔分数分别为0.25%,0.5%与0.75%时的着火延迟时间进行了实验测量;分析了着火温度、压力、当量比以及燃料摩尔分数等对混合气着火延迟时间的影响,拟合得到了上述工况下混合气着火延迟时间的Arrhenius的关系式,并与相关实验结果进行了对比分析。结果表明,在不同压力或不同当量比下,混合气着火延迟时间的对数与着火温度呈直线关系;随着着火温度、压力与燃料摩尔分数的升高以及当量比的降低,混合气的着火延迟时间逐渐缩短。 In order to obtain the experimental data of ignition characteristics of RP-3 kerosene and estab-lish the reaction kinetic model of this fuel,the ignition delay time of RP-3 kerosene/oxygen/Ar mixtures over the temperature range of 1100~1600K, at pressure of 0.1, 0.2 and 0.3MPa, at equivalence ratios of 0.5, 1.0 and 1.5, and for fuel mole fractions of 0.25%, 0.5% and 0.75%, respectively, were measured behind reflected shock waves, using side-wall pressure and OH auto-luminescence signals measurements in a chemical shock tube. The effects of ignition temperature,pressure,equivalence ratio and mole fraction of fuel on the ignition de-lay time were investigated,the Arrhenius correlations for the ignition delay time of the mixture under the above conditions were also deduced, and comparisons with related experimental results were presented. The results show that the correlation for the logarithm of the ignition delay time of the mixture and ignition temperature is lin-ear under different pressure or different equivalence ratios. With the ignition temperature, pressure and mole fraction of fuel increasing and the equivalence ratio decreasing,the ignition delay time of the mixture is shorten-ing.
出处 《推进技术》 EI CAS CSCD 北大核心 2015年第2期306-313,共8页 Journal of Propulsion Technology
基金 国家自然科学基金资助项目(51376133) 辽宁省自然科学基金(2013024009) 沈阳市科技攻关项目(F13024200)
关键词 着火延迟时间 RP-3航空煤油 实验研究 影响因素 Ignition delay time RP-3 kerosene Experimental study Effect factor
  • 相关文献

参考文献20

  • 1Freeman G, Lefebvre A H. Spontaneous Ignitim Char- acteristics of Gaseous Hydrocarbon-Air Mixtures [J]. Combustion and Flame, 1984, 58(2): 153-162.
  • 2Luche J, Reuillon M, Boettner J C, et al. Redu:tion of Large Detailed Kinetic Mechanisms: Application to Kero- sene/Air Combustion [J]. Combustion Science and Tech- nology, 2004, 176(3): 1935-1963.
  • 3Agosta A, Cernansky N l?, Miller D L, et al. Reference Components of Jet Fuels: Kinetie Modeling and Experi- mental Results[J]. Experimental Thermal and Fluid Sci-ence, 2004, 28(7): 701-708.
  • 4Dagaut P, Reuillon M, Cathonnet M. High Pressure Ox- idation of Liquid Fuels From Low to High Temperature. 3. n-Decane [J]. Combustion Science and Technology, 1994, 103(2): 349-359.
  • 5Dagaut P, Reuillon M, Boettner J C, et al. Kerosene Combustion at Pressures Up to 40atm: Experimental Study and Detailed Chemical Kinetic Modeling[J]. Pro- ceedings of the Combustion Institute, 1994, 25(2): 919- 926.
  • 6Cooke J A, Bellucei M, Smooke M D, et al. Computa- tional and Experimental Study of JP-8, a Surrogate, and its Components in Counter-Flow Diffusion Flames [J]. Proceedings of the Combustion Institute, 2005, 30 ( 1 ) : 439-446.
  • 7Wen Z, Yun S, Thomson M J, et al. Modeling Soot For- marion in Turbulent Kerosene/Air Jet Diffusion Flames [J]. Combustion and Flame, 2003, 135(3): 323-340.
  • 8Patterson P M, Kyne A G, Pourkhashanian M, et al. Combustion of Kerosene in Counter-Flow Diffusion Flames[J]. Journal of Propulsion and Power, 2000, 16 ( 3 ) : 453-460.
  • 9Vasu S S, Davidon D F, Hanson R K. Jet Fuel Ignition Delay Times: Shock Tube Experiments over Wide Condi- tions and Surrogate Model Predictions [J]. Combustion and Flame, 2008, 152( 1/2): 125-143.
  • 10Dean A J, Penyazkov O G, Serruk K L, at al. Ignition of Aviation Kerosene at High Temperature [ C ]. Canada: 20th ICDERS, Montreal, 2005.

二级参考文献44

  • 1Curran E T. Scramjet engines: The first forty years. J Propul Power, 2001, 17:1138-1148.
  • 2Char J M, Liou W J, Yeh J H, et al. Ignition and combustion study of JP-8 fuel in a supersonic flow field. Shock Waves, 1996, 6:259-266.
  • 3Vasu S S, Davidson D F, Hanson R K. Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions. Combust Flame, 2008, 152:125-143.
  • 4Ranzi E, Frassoldati A, Granata B, et al. Wide range kinetic modeling study of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes. Ind Eng Chem Res, 2005, 44:5170-5183.
  • 5Honnet S, Seshadri K, Niemann U, et al. A surrogate fuel for kerosene. P Combust Inst, 2009, 32:485--492.
  • 6Davidson D F, Haylett D R, Hanson R K. Development of an aerosol shock tube for kinetic studies of low vapor pressure fuels. Combust Flame, 2008, 155:108-117.
  • 7Homing D C, Davidson D F, Hanson R K. Study of the high temperature autoignition of n-alkane/O2/Ar mixtures. J Propul Power, 2002, 18:363-371.
  • 8Vasudevan V, Davidson D F, Hanson R K. Shock tube measurements of toluene ignition times and OH concentration time histories. P Combust Inst, 2005, 30:1155-1163.
  • 9Dagaut P, Cathonnet M. The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling. Prog Energ Combust Sci, 2006, 32:48-92.
  • 10Patterson P M, Kyne A G, Pourkashanian M, et al. Combustion of kerosene in countefflow diffusion flames. J Propul Power, 2001, 17: 453-460.

共引文献29

同被引文献79

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部