期刊文献+

固体燃料ATR涡轮/压气机匹配方法研究 被引量:11

Research on Matching Method of Turbine/Compressor in Solid Propellant Air Turbo Rocket
下载PDF
导出
摘要 为了获得固体燃料空气涡轮火箭发动机(SP-ATR)中涡轮和压气机的匹配工作特性,建立了涡轮和压气机的工作特性模型,根据SP-ATR转速、功率和背压平衡的工作特点,分别基于涡轮和压气机的工作环境先后采用两种不同的方法完成了二者的匹配。对比两种匹配方法得出结论:(1)基于涡轮的匹配方法与转速稳定过程一致,可确定特定飞行环境中发动机的转速;(2)基于压气机的匹配方法需要条件更少、适用范围更广,可用于特定转速调控方案下驱涡燃气流量的确定。两种匹配方法的计算结果相对Ax STREAM仿真结果的最大误差为10.75%,两种匹配方法的计算结果相差不超过8%。将建立的匹配方法应用于HARM弹自主爬升飞行过程,得到SP-ATR驱涡燃气流量的定量调控规律。 In order to obtain the cooperative operating characteristics of turbine and compressor in Solid Propellant Air Turbo Rocket (SP-ATR) , turbine and compressor operating characteristics models were built up firstly, and then, following the matching criteria of rotating and power and backpressure balance, two different matching methods were carried out according to each component working conditions. The comparison results show that: (1) The matching method based on turbine is consistent with the actual stabilizing process of rotor, which can be used to calculate the rotating speed of SP-ATR in a certain condition. (2) The matching method based on compressor needs fewer requirements and has broader application range. It can be used to calculate the gas mass flow according to the control scheme of rotating speed. The maximum error between the matching results of two methods and the simulation result of AxSTREAM is 10.75%, and the error between two matching methods is less than 8%. At last, the matching method was used for the missile HARM' s autonomous climbing flight, and the quantitative variation of turbo-driving gas mass flow in SP-ATR was obtained.
出处 《推进技术》 EI CAS CSCD 北大核心 2015年第3期378-384,共7页 Journal of Propulsion Technology
关键词 匹配方法 固体燃料空气涡轮火箭 涡轮 压气机 Matching method Solid propellant air turbo rocket Turbine Compressor
  • 相关文献

参考文献15

二级参考文献30

  • 1陈林泉,毛根旺,霍东兴,刘霓生.燃气喷射方式对冲压发动机补燃室掺混效果的影响[J].固体火箭技术,2005,28(1):40-43. 被引量:7
  • 2屠秋野,陈玉春,苏三买,蔡元虎,蹇泽群.固体推进剂吸气式涡轮火箭发动机的建模及特征研究[J].固体火箭技术,2006,29(5):317-319. 被引量:32
  • 3Thomas M E and Christensen K L. Air-turbo-ramjet propulsion for tactical missiles [ R]. AIAA-94-2719, 1994.
  • 4Thomas M E. Monorotor turbomachinery for air-turbo-rocket engine [R]. AIAA-95-2804, 1995.
  • 5Ostrander M J. Air-turbo-rocket solid-propellant development and testing[ R]. AIAA-97-3258, 1997.
  • 6Bossard J A, Thomas M E. The influence of turbomachinery characteristics on air turbo rocket engine operation [ R ]. AIAA-2000-3308, 2000.
  • 7Thomas M E, Bossard J A and Ostrander M J. Addressing emerging tactical missile propulsion challenges with the solid propellant air-turbo-rocket[ R]. AIAA-2000-3309, 2000.
  • 8M E Thomas, K L Christensen. Air-turbo-ramjet propulsion for tactical missile[C]// 30th AIAA/ ASME/SAE/ASEE Joint Propulsion Conference, June 27 -- 29, 1994/Indianapolis, IN. AIAA-- 94 --2719, 1994.
  • 9M E Thomas. Mortorotor turbomachinery for airturbo-rocket propulsion[C]// 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit July 10-- 12, 1995/San Diego, CA, AIAA 95 --2804, 1995.
  • 10Mark J Ostrander, Matthew E Thomas. Air turborocket solid propellant development and testing [R]. American Institute of Aeronautics and Astronautics, Inc,AIAA--1997--3258, 1997.

共引文献42

同被引文献81

引证文献11

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部