期刊文献+

Analytic Expression of Geometric Discord in Arbitrary Mixture of any Two Bi-qubit Product Pure States

Analytic Expression of Geometric Discord in Arbitrary Mixture of any Two Bi-qubit Product Pure States
原文传递
导出
摘要 Quantum correlations in a family of states comprising any mixture of a pair of arbitrary bi-qubit product pure states are studied by employing geometric discord [Phys. Rev. Lett. 105(2010) 190502] as the quantifier. First, the inherent symmetry in the family of states about local unitary transformations is revealed. Then, the analytic expression of geometric discords in the states is worked out. Some concrete discussions and analyses on the captured geometric discords are made so that their distinct features are exposed. It is found that, the more averagely the two bi-qubit product states are mixed, the bigger geometric discord the mixed state owns. Moreover, the monotonic relationships of geometric discord with different parameters are revealed.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2015年第4期439-444,共6页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China(NNSFC)under Grant Nos.11375011 and 11372122 the Natural Science Foundation of Anhui Province under Grant No.1408085MA12 the 211 Project of Anhui University
关键词 mixture of a pair of arbitrary bi-qubit product pure state geometric discord inherent symmetry of local unitary transformation m 几何分析 解析表达式 量子比特 混合物 和谐 产品 混合状态 量子相关性
  • 相关文献

参考文献44

  • 1H. Ollivier and W.H. Zurek, Phys. Rev. Lett. 88 (2001) 017901.
  • 2S.L. Luo, Phys. Rev. A 7'i" (2008) 022301.
  • 3K. Modi, T. Paterek, W. Williamson, Phys. Rev. Lett Son, V. Vedral, and M lO4 (2OLO) OSODm.
  • 4B. Daki'c, V. Vedral, and C. Brukner, Phys. Rev. Lett. 105 (2010) 190502.
  • 5S.L. Luo and S.S. Fu, Phys. Rev. A 82 (2010) 034302.
  • 6T. Zhou, J. Cui, and G.L. Long, Phys. Rev. A 84 (2011) 062105.
  • 7D. Girolami, M. Paternostro, and G. Adesso, J. Phys. A: Math. Theor. 44 (2011) 352002.
  • 8C.C. Rulli and M.S. Sarandy, Phys. Rev. A 84 (2011) 042109.
  • 9F.L. Zhang and J.L. Chen, Phys. Rev. A 8,1 (2011) 062328.
  • 10B.L. Ye, Y.M. Liu, J.L. Chen, X.S. Liu, and Z.J. Zhang, Quantum Inf. Process. 12 (2013) 2355.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部