期刊文献+

撞击角对撞击式喷嘴雾化特性影响研究 被引量:12

Effects of Impingement Angle on Atomization Characteristics of Impinging Jets Injector
下载PDF
导出
摘要 为了研究液体火箭发动机中撞击式喷嘴的雾化问题,采用CLSVOF(Coupled Level-Set and Volume-of-Fluid Method)方法对撞击式喷嘴的雾化过程进行了数值仿真模拟,重点考察了撞击角对撞击式喷嘴雾化特性的影响。结果表明,通过CLSVOF方法能对射流撞击雾化形态进行较好的捕捉;分析整个雾化区域的液相分布,将射流撞击雾化过程中的液相分布大致分为三个区域:撞击前两股独立射流区域、撞击后形成的液膜区域、液膜破碎后液丝和液滴的生成区域;射流撞击雾化除了气液界面上速度差引起的不稳定之外,还存在由射流湍流或撞击波引起的其它不稳定因素;液膜破碎长度随撞击角的增大而减小,液膜表面上的表面波幅值及液膜破碎程度则随撞击角的增大而增大;射流撞击在撞击点位置处所形成的速度差对液膜的破碎和液膜上表面波幅值的大小起到了关键作用。 Aiming at elucidating the detailed atomization process of the impinging-jet injector in liquid rock?et motor and the relationship between impingement angle and atomization characteristics of liquid sheet formed by the injector,numerical investigation of atomization characteristics of impinging jets injector is conducted based on the CLSVOF(Coupled Level-Set and Volume-of-Fluid Method)method. The study is focused on the effects of impingement angle on the atomization characteristics,and the simulation results are compared with the theoretic results. The simulation results show that the atomization characteristics of the liquid sheet formed by the impinging jets can be effectively captured by the CLSVOF method. By studying the liquid distribution of the atom?ization region,the liquid distribution in the atomization process can be divided into three regions:the separated jets region before the jets impact,the liquid sheet region after the jets impact and the formation of ligaments and droplets region. The present numerical results also show that the atomization process is affected not only by the in?stability caused by velocity difference on the gas-liquid interface,but also other factors such as turbulence inten?sity and impact wave. The breakup length of liquid sheet decreases with the increasing impingement angle ,the amplitude of surface wave on the liquid sheet and the breakup intensity of liquid sheet increase with the increas?ing impingement angle. The velocity difference at the location of impact point formed by the impinging jets plays a key role in the breakup of liquid sheet and formation of surface wave.
出处 《推进技术》 EI CAS CSCD 北大核心 2015年第4期608-613,共6页 Journal of Propulsion Technology
基金 国家自然科学基金(51076168)
关键词 撞击式喷嘴 撞击角 雾化特性 数值仿真 CLSVOF Impinging jets injector Impingement angle Atomization characteristics CLSVOF Numerical investigation
  • 相关文献

参考文献19

  • 1Ryan H M, Anderson W E, Pal S, et al. Santoro, At- omization Characteristics of Impinging Liquid Jets [R].AIAA 93-0230.
  • 2石少平,庄逢辰.低Weber数射流撞击雾化的数学模型[J].航空动力学报,1994,9(3):285-288. 被引量:5
  • 3Anderson William E, Ryan Harry M, Santoro Robert J. Impact Wave-Based Model of Impinging Jet Atomization [J]. Atomization and Sprays, 2006, 16( 1 ):791-805.
  • 4Yong Ho Cho, Seong Woong Lee, Byung Ho Rhee, et al. Experimental Speculation on Unlike Split Triplet Jet Mixing [ R]. AIAA 2003-0322.
  • 5孙纪国,王珏,沈赤兵,周进,王振国.一种40°撞击角双股自击式喷嘴试验[J].推进技术,2002,23(3):207-208. 被引量:8
  • 6张蒙正,张泽平,李鳌,王玫.两股互击式喷嘴雾化性能实验研究[J].推进技术,2000,21(1):57-59. 被引量:21
  • 7Ciezki H K, Robers A, Schneider G. Investigation of the Spray Behavior of Gelled Jet A-1 Fuels Using an Air Blast and an Impinging Jet Atomizer[R]. A1AA 2002- 3601.
  • 8Jens yon Kampen, Francesco Alberio, Helmut K Ciez- ki. Spray and Combustion Characteristics of Aluminized Gelled Fuels with an Impinging Jet Injector [J]. Aero- space Science and Technology, 2007, 11 ( 1 ) : 77-83.
  • 9Kline M C, Woodward R D, Burch R L, et al. Experi- mental Observation of Impinging Jet Breakup Utilizing Laser-Sheet Illuminated Photography [R]. AIAA 91- 3596.
  • 10Hrishikesh Gadgil, Sandip Sabnis. Experimental Stud- ies on Mass Distribution of Impinging Jets [R]. A1AA 2006-5199.

二级参考文献31

  • 1张蒙正,陈炜,杨伟东,李军.撞击式喷嘴凝胶推进剂雾化及表征[J].推进技术,2009,30(1):46-51. 被引量:24
  • 2周猛.气液同轴式喷注器雾化特性和激光散射测粒技术研究[M].长沙:国防科技大学,1991..
  • 3BAKER G R, MOORE D W. The rise and distortion of a two dimensional gas bubble in an inviscid liquid[J]. Physics of Fluid A: Fluid Dynamics, 1989, 1(9):1451- 1459.
  • 4UNVERDI S O, TRYGGVASON G A. Front tracking method for the viscous, impressible, multi-fluid flows[J]. Journal of Computational Physics, 1992, 100(1): 25-37.
  • 5CHURCHILL S W. The practical use of theory: viscous flows[M]. London: Butterworth-Heinemann Ltd, 1988.
  • 6PUCKTT E G, ALMGERN A S, BELL J B, et al. A high-order projection method for tracking fluid interface in variable density incompressible flows[J]. Journal of Computational Physics, 1997, 130(2): 269-282.
  • 7SUSSMAN M, SMEREKA P, OSHER S. A level set method for computing solutions to incompressible two- phase flows[J]. Journal of Computational Physics, 1994, 114(1):146-159.
  • 8MENARD T, TANGUY S, BERLEMONT A. Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of primary break-up of a liquid jet[J]. International Journal of Multiphase Flow, 2007, 33(5): 510-524.
  • 9SUSSMAN M, PUCKETT E G A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337.
  • 10YOUNGS D L. Time-dependent multi-material flow with large fluid distortion[M]//Morton K W, Baines M J. Numerical methods for fluid dynamics, New York: AcademicPress, 1982.

共引文献42

同被引文献68

引证文献12

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部