2SMAHA S E. Haystack: An intrusion detection system[ C]// Pro- ceedings of IEEE 4th Aerospace Computer Security Applications Conference. Piscataway: IEEE, 1988:37-44.
3KIM S S, REDDY A L N. Detecting traffic anomalies at the source through aggregate analysis of packet header data[ EB/OL]. [ 2013- 02-10]. http://www, ece. tamu. edu/-reddy/papers/skim_net04. pdf.
4LAKHINA A, CROVELLA M, DIOT C. Mining anomalies using traffic feature distributions [ C ]// Proceedings of the 2005 ACM SIGCOMM 2005. New York:ACM, 2005:9 -20.
5VELARDE-ALVARADO P, VARGAS-ROSALES C, TORRES- ROMAN D, et al. Detecting anomalies in network traffic using the method of remaining elements [ J ]. IEEE Communications Letters, 2009, 13(6) : 462 -464.
6ZIVIANI A, GOMES A T A, MONSORES M L. Network anomaly detection using nonextensive entropy [ J ]. IEEE Communications Letters, 2007, 11 (12) : 1034 - 1036.
7FEINSTEIN L, SCHNACKENBERG D, BALUPARI R, et al . Statistical approaches to DDoS attack detection and response [ EB/ OL]. [2013-01-20]. http://www, cs. unc. edu/-jeffay/courses/ nidsS05/signal-proc/feinstein-stat-anal-03, pdf.
8BARFORD P, LLINE J, PLONKA D, et al. A signal analysis of network traffic anomalies [ C ]// Proceedings of the 2002 ACM SIGCOMM Internet Measurement Workshop. New York: ACM,2002:71 - 82.
9DAINOTTI A, PESCAPE A, GIORGIO V. Wavelet-based detection of DoS attacks [ C ]// Proceedings of the 2006 IEEE Global Telecommunications Conference. Piscataway : IEEE, 2006, 1 - 6.
10LI L, LEE G. DDoS attack detection and wavelets [J]. Telecommunication Systems, 2005, 28 (3/4) : 421 - 427.