期刊文献+

基于FCM的时间序列论域划分方法

A FCM-based Domain Partition Method for Time Series Data Set
下载PDF
导出
摘要 随着社会的发展,人们对于数据预测的需求日益增加,模糊时间序列因其能够处理时间序列中含糊不清的数据而备受关注。从提高模型的预测精度角度来看,论域划分作为时间序列数据预测的第一步,作用至关重要。本文提出一种基于FCM的二次论域划分方法。该方法首先根据FCM聚类算法得到的聚类中心对论域进行一次划分,然后根据样本点空间分布的疏密程度不同对论域进行二次细化,实现不等分论域,最后通过对经典样本的预测证明方法的可行性。 With the development of society , people increasingly demand for data prediction , fuzzy time series has been attracted much attention because it can handle the ambiguities in time series data .To improve the prediction accuracy of the model , do-main partition is crucial as the first step of the prediction .In this paper, we present a FCM-based two-time domain partition meth-od .We make the first partition according to the clustering center obtained from FCM clustering , the second partition to realize un-equal domain according to the density distribution of the sample points .Finally, the feasibility of the new method is verified through the prediction of classic sample .
出处 《计算机与现代化》 2015年第5期9-12,共4页 Computer and Modernization
关键词 时间序列 论域划分 FCM聚类算法 数据预测 time series domain partition FCM clustering algorithm data forecast
  • 相关文献

参考文献17

  • 1Song Qiang, Chissom B S. Fuzzy time series and its models [ J]. Fuzzy Sets and Systems, 1993,54(3) :269-277.
  • 2Chen Shyi-Ming. Forecasting enrollments based on fuzzy time series[J]. Fuzzy Sets and Systems, 1996,81(3):311-319.
  • 3Hwang Jeng-Ren, Chen Shyi-Ming, Lee Chia-Hoang. Han- dling forecasting problems using fuzzy time series [ J ]. Fuzzy Sets and Systems, 1998,100(1-3) :217-228.
  • 4Jilani T A, Burney S M A. A refined fuzzy time series mod- el for stock market forecasting [ J ]. Physica A: Statistical Mechanics and its Applications, 2008,387 (12) :2857-2862.
  • 5Yu Hui-Kuang. A refined fuzzy time-series model for fore- casting[ J]. Physica A: Statistical Mechanics and its Ap- plications, 2005,346(3-4) :657-681.
  • 6Aladag C H, Basaran M A, Egrioglu E, et al. Forecasting in high order fuzzy times series by using neural networks to define fuzzy relations [ J ]. Expert Systems with Applica- tions, 2009,36 ( 3 ) :4228-4231.
  • 7Aladag C H, Yolcu U, Egrioglu E. A high order fuzzy time series forecasting model based on adaptive expectation and artificial neural networks [ J ]. Mathematics and Computers in Simulation, 2010,81 (4) :875-882.
  • 8EgTioglu E, Aladag C H, Yolcu U, et al. Finding an opti- mal interval length in high order fuzzy time series [ J ]. Ex- pert Systems with Applications, 2010,37 (7) :5052-5055.
  • 9Yolcu U, Egrioglu E, Uslu V R, et al. A new approach for determining the length of intervals for fuzzy time series [ J ]. Applied Soft Computing, 2009,9(2) :647-651.
  • 10Egriogiu E, hladag C t-I, Yolcu U, et al. A new hybrid approach based on SARIMA and partial high order bivariate fuzzy time series forecasting model [ J ]. Expert Systems with Applications, 2009,36 (4) :7424-/434.

二级参考文献12

  • 1Rafiei D. On Similarity-Based'Queries for Time Series Data [C]//Proc of the 15th Int'l Conf on Data Engineering, 1999: 410-417.
  • 2Song Q, Chissom B S. Forecasting Enrollments with Fuzzy Time Series-Part Ⅰ[J]. Fuzzy Sets System, 1993,54(1):1-9.
  • 3Song Q, Chissom B S. Fuzzy Time Series and Its Models[J]. Fuzzy Sets System, 1993,54(1) :269-277.
  • 4Song Q, Chissom B S. Forecasting Enrollments with Fuzzy Time Series-Part Ⅱ[J]. Fuzzy Sets Systems, 1994,62 (1): 1- 8.
  • 5Sullivan J, Woodall W H. A Comparison of Fuzzy Forecasting and Markov Modeling [J]. Fuzzy Sets and Systems, 1994,64(3) : 279-293.
  • 6Chen S M. Forecasting Enrollments Based on High-Order Fuzzy Time Series[J]. Cybernetics and Systems, 2002, 33 (1):1-16.
  • 7Own C M, Yu P T. Forecasting Fuzzy Time Series on a Heuristic High-Order Model[J]. Cybernetics and Systems, 2005, 36(7) : 705-717.
  • 8Lee L W, Wang L H, Chen S M,et al. Handling Forecasting Problems Based on Two-Factors High-Order Fuzzy Time Series[J]. IEEE Trans on Fuzzy Systems, 2006, 14(3): 468- 477.
  • 9Li S T, Cheng Y C. Deterministic Fuzzy Time Series Model for Forecasting Enrollments[J]. Computers and Mathematics with Applications,2007,53(12) : 1904-1920.
  • 10Setnes M. Supervised Fuzzy Clustering for Rule Extraction[J]. IEEE Trans on Fuzzy System,2000,8(4):416-424.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部