期刊文献+

沙田柚S-RNase基因的克隆及序列分析 被引量:10

Cloning and Sequence Analysis of S-RNase Gene from Citrus grandis var.Shatinyu Hort
下载PDF
导出
摘要 利用高通量测序技术对沙田柚自交和异交花柱进行转录组测序。通过差异分析得到沙田柚S-RNase基因序列。该基因全长为1 238bp(GenBank登录号为KP172529),开放阅读框(ORF)全长为834bp,共编码278个氨基酸,编码的蛋白质的相对分子质量为31.402kDa,理论等电点为5.30。S-RNase蛋白为亲水性蛋白,共有17个可能的磷酸化位点。氨基酸序列分析表明,其编码的氨基酸与柚Citrus maxima、沙糖桔Citrus reticulata和甜橙Citrus sinensis的同源性分别为99%、98%和96%。系统进化树显示沙田柚S-RNase基因与柚、沙糖桔和甜橙亲缘关系很近,属于同一进化分支。 In this paper, the transcriptome of the self-pollinated style and cross-pollinated style of Citrus grandis var. Shatinyu Hort were sequenced by high-throughput sequencing technology. S-RNase gene sequences of Citrus grandis var. Shatinyu Hort was obtained through different analytical method. It is 1 238 bp (GenBank accession number:KP172529) in length with an open reading frame(ORF)of 834 bp, encoding 278 amino acids with deduced molecular weight of 31.402 kDa, and theoretical pI value of 5.30. Bioinformatics analysis showed that S-RNase is a hydrophilic protein, and there are 17 phosphorylation sites within the polypeptide chain. The homology analysis of amino acid sequence indicated that the S- RNase protein shared high homology with that of Citrus maxima (99%), Citrus reticulate (98%) and Citrus sinensis (96%). Phylogenetic analysis revealed that S-RNase gene showed closer kinship with that of Citrus maxima, Citrus reticulate and Citrus sinensis, indicating that they belong to the same evolutionary branch.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2015年第1期139-145,共7页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(31360477) 广西教育厅资助项目项目(2013YB036)
关键词 沙田柚 S-RNsae基因 序列分析 Citrus grandis var. Shatinyu Hort S-RNase gene sequence analysis
  • 相关文献

参考文献21

  • 1TAKAYAMA S,ISOGAI A.Self incompatibility in plants[J].Annual Review of Plant Biology,2005,56:467-489.
  • 2LORD E M. Adhesion and guidance in compatible pollination[J]. Journal of Experimental Botany, 2003, 54 (380): 47-54.
  • 3SWANSON W J, VACQUIER, V D. The rapid evolution of reproductive proteins[J]. Nature Review Genetics,2002,3 (2) :137-144.
  • 4HISCOCK S J, ALLEN A M. Diverse cell signalling pathways regulate pollen-stigma interactions: the search for consensus[J]. The New Phytologist, 2008, 179(2):286-317.
  • 5DE NETTANCOURT D. Incompatibility in angiosperms[J].Sexual Plant Reproduction, 1997,10(4) : 185-199.
  • 6SASSA H, NISHIO T, KOWYAMA Y, et al. Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily[J].Molecular and General Genetics, 1996, 250(5): 547-557.
  • 7TAO R, YAMANA H, SASSA H, et al. Identification of stylar RNases associated with gametophytic self- incompatibility in almond (Prunus dulcir)[J]. Plant and Cell Physiology, 1997, 38(3):304-311.
  • 8XUE Yong-biao, CARPENTER R, DICKINSON H G, et al. Origin of allelic diversity in Antirrhinum S locus RNases[J].The Plant Ce11,1996, 8(5) :805-814.
  • 9McCLURE B A, FRANKLIN TONG V. Gametoi0hytic self-ineompatibility: understanding the cellular mechanisms involves in "self" pollen tube inhibition[J].Planta, 2006, 224(2):233-245.
  • 10FRANKLIN-TONG V E, RIDE J P, READ N D, et al. The self-incompatibility rcsponse in Papaver rhoea.s is mediated by cytosolic free calcium[J]. The Plant Journal, 1993, 4(1): 163-177.

二级参考文献38

共引文献62

同被引文献52

引证文献10

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部