期刊文献+

下肢外骨骼康复机器人的灵敏度放大控制研究 被引量:4

Research on sensitivity amplification control of lower limbs exoskeletons rehabilitation robot
下载PDF
导出
摘要 针对课题组研发的下肢外骨骼康复机器人中的患者主动训练模式,提出了灵敏度放大的控制方法,建立弹簧阻尼模型更好的模拟出人机交互时的交互力,并通过Matlab/Sim Mechanics和BP神经网络建立逆动力学模型,用Sim Mechanics和Simulink模块进行了计算机仿真实验,仿真结果表明采用灵敏度放大控制方法能减小患者训练时体能的消耗,实现了患者以较小的力矩带动外骨骼实现共同运动,同时可以采集到患者腿部的数据进行康复评价. For the development of lower extremity exoskeleton robot rehabilitation of patients with active training mode, the method of controlling the sensitivity of the amplification was proposed, and a better spring-damper model was built to simulate the interaction force of human-computer interaction and established inverse dynamics model by Matlab/SimMechanics and BP neural network after Computer simulation experiments had been made by SimMechanics and Simulink Module. The simulation results show that Sensitivity amplification control method can reduce physical exertion of patient, and implement patient with less torque to achieve common movement driven exoskeleton, meanwhile, data collected in the legs can be used in Rehabilitation Evaluation.
出处 《河北工业大学学报》 CAS 2015年第2期53-56,94,共5页 Journal of Hebei University of Technology
基金 河北省教育厅科技计划(ZD200915)
关键词 下肢外骨骼康复机器人 灵敏度放大控制 人机结合 Matlab/Sim MECHANICS lower limbs exoskeletons rehabilitation robot sensitivity amplification control human-machine Matlab/ SimMechanics
  • 相关文献

参考文献9

二级参考文献71

  • 1归丽华,杨智勇,顾文锦,张远山,杨秀霞.能量辅助骨骼服NAEIES的开发[J].海军航空工程学院学报,2007,22(4):467-470. 被引量:27
  • 2刘炳坤.人体冲击动力学模型研究中的若干问题[J].航天医学与医学工程,1996,9(5):381-384. 被引量:12
  • 3YANG CANJUN, NIU BIN, CHEN YING. Adaptive neuro-fuzzy control based development of a wearable exoskeleton leg for human walking power augmentation[C]//Proceedings of the 2005 IEEE/ ASME International Conference on Advanced Intelligent Mechatronics, Monterey, California, USA, 2005:24-28.
  • 4ADAM B ZOSS, KAZEROONI H, ANDREW CHU. Biomechanical design of the berkeley lower extremity exoskeleton (BLEEX)[J]. IEEE/ASME Transactions on Mechatronics, 2006,11 (2): 128-138.
  • 5NElL J MIZEN. Preliminary design of a full-scale, wearable, exoskeleton structure[R]. Cornell Aeronautical Laboratory, AD-A058716, 1963.
  • 6VUKOBRATOVIC M, CIRIC V, HRISTIC D. Contribution to the study of active exoskeletons[C]// Proceedings of the 5^th International Federation of Automatic Control Congress, Paris, France, 1972.
  • 7HRISTIC D, VUKOBRATOVIC M. Development of active aids for handicapped[C]//Proceedings of the Ⅲ International Conference on Biomedical Engineering, Sorrento, Italy, 1973.
  • 8REPPERGER D W, REMIS S J, MERRILL G. Performance measures of teleportation using an exoskeleton device[C]//Proceedings of the IEEE International Conference on Robotics and Automation, 1990,27:552-557.
  • 9GIUFFRIDA F, PIAGGIO M, GOERRASIO C. G-EXO. A modular exoskeleton as multi purpose multi media interface[C]//Proceedings of IEEE International Workshop on Robot and Human Communication. 1996: 213-216.
  • 10WRIGHT A K, STANISIC M M. Kinematic mapping between-the EXOS handmaster exoskeleton and the Utah/MiT dextrous hand[C]//Proceedings of IEEE International Conference on System Engineering. 1990: 101-104.

共引文献54

同被引文献20

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部