期刊文献+

腈水合酶交联酶聚集体在生成烟酰胺体系中的应用 被引量:1

The application of nitrile hydratase cross-linked enzyme aggregates in the generated system of nicotinamide
下载PDF
导出
摘要 采用交联酶聚集体(CLEAs)技术和球化酶技术对来自大肠杆菌的ES-NHT-118腈水合酶进行固定化.利用大分子葡聚糖醛作为交联剂交联腈水合酶,在优化了温度、p H、交联剂用量及交联时间后,腈水合酶CLEAs和球化酶的酶活回收率分别达到49.63%及52.88%.利用扫描电子显微镜对2种固定化酶进行了表征,将固定化酶用于催化3-腈基吡啶转化生成烟酰胺.同游离酶相比,腈水合酶CLEAs和球化酶显示了良好的p H稳定性和热稳定性,对高浓度底物的耐受性也有提升.酶活为4 U/m L,底物终浓度为50 mmol/L时,2种固定化酶在重复使用10次后分别保留了73.45%及61.26%的催化产率. Cross-linked enzyme aggregates (CLEAs) and spherezymes ofnitrile hydratase (NHase) ES-NHT-118 from E.coli were prepared. Dextran polyaldehyde, a macromolecular cross-linker, was employed to cross-link NHase for the first time. After having optimized the temperature, pH, concentration of the cross-linker and the cross-linking time in the process of preparation, NHase CLEAs and spherezymes have obtained 49.63%, 52.88% of activity recovery, re- spectively. The morphology of CLEAs and spherezymes were analyzed by using scanning electron microscopy (SEM). The immobilized enzymes were employed to catalyze 3-cyanopyridine converted to nicotinamide. The NHase CLEAs and spherezymes exhibited increased stability at varied pH and temperature conditions when compared with its free counterpart. When exposed to high concentrations ofacrylamide, immobilized enzymes also exhibited effective catalytic activity. When having reached the effect of 50 mmol/L 3-cyanopyridine, 4 U/mL NHase CLEAs and spherezymes kept respectively 74.37%, 63.95% of their original activity after being recycled ten times.
出处 《河北工业大学学报》 CAS 2015年第2期68-74,共7页 Journal of Hebei University of Technology
基金 国家自然科学基金(21276062) 河北省高等学校科学技术研究重点项目(YQ2013025) 天津市自然科学基金(13JCYBJC18500) 天津市高等学校科技发展基金计划项目(20140513)
关键词 腈水合酶 固定化酶 交联酶聚集体 葡聚糖醛 球化酶 nitrile hydratase immobilized enzyme cross-linked enzyme aggregates (CLEAs) extran polyaldehyde spherezymes
  • 相关文献

参考文献22

  • 1Velankar H, Clarke KG, Du Preez R, et al. Developments in nitrile and amide biotransformation processes [J]. Trends Biotechnol, 2010, 28: 561-569.
  • 2Martinez S, Kuhn ML, Russell JT, et al. Acrylamide production using encapsulated nitrile hydratase from Pseudonocardia thermophila in a sol-gel matrix [J]. J MolCatal B: Enzym, 2014, 100.- 19-24.
  • 3Gong J S, Lu ZM, Li H, et al. Nitrilases in nitrile biocatalysis., recent progress and forthcoming research [J]. Microb Cell Fact, 2012, 11 .. 142.
  • 4Prasad S, Bhalla TC. Nitrile hydratases (NHases): at the interface of academia and industry [J]. Biotechnol Adv, 2010, 28: 725-741.
  • 5Schmid A, Dordick J S, Hauer B, et al. review article Industrial biocatalysis today and tomorrow [J]. Nature, 2001, 409: 258-268.
  • 6Shen Y, Du F, Gao W, et al. Stereoselective nitrile hydratase [J]. Afr J Microbiol Res, 2012, 6: 6114-6121.
  • 7Van Pelt S, Quignard S, Kub~i~ D, et al. Nitrile hydratase CLEAs: the immobilization and stabilization of an industrially important enzyme [J]. GreenChem, 2008, 10.- 395-400.
  • 8PawarSV, YadavGD. PVA/~hit~san-glutara~dehydecr~ss-~inkednitri~ehydrataseasreusablebi~cata~ystf~rc~nversi~n~fnitri~est~amides [J]. J MolCatalB.. Enzym, 2014, 101.- 115-21.
  • 9Chiyanzu I, Cowan DA, Burton SG. Immobilization of Geobacillus pallidus RAPc8 nitrile hydratase (NHase) reduces substrate inhibition and enhances thermostability [J]. J Mol Catal B.. Enzym, 2010, 63.. 109-115.
  • 10Cao LQ, Van Rantwijk F, Sheldon RA. Cross-linked enzyme aggregates: A simple and effective method for the immobilization of penicillin acylase [J]. OrgLett, 2000, 2: 1361-1364.

同被引文献20

  • 1贺立红,张进标,宾金华.苯丙氨酸解氨酶的研究进展[J].食品科技,2006,31(7):31-34. 被引量:55
  • 2SHEI.D()N R A. Characteristic Microbiology and t?,imechnology, KIM M I I, KIMJ B, I.EEJ W fealures and biotechnological applications of cross-linked enzyme aggregates (CLEAs) [J]. Applied 2011,92(3) : 467-477.
  • 3One-dimensional crosslinked enzyme aggregates in SBA-15: Superior catalytic behavior to conventionalenzyme immobilization[J]. Microporous and Mesoporous Materials, 2008,101:18-23.
  • 4MACIEL J C, ANDRAD P L, NERI D F M, et al. Preparation and characterization of magnetic levan particles as matrix for trypsin immobilization[J]. Journal of magnetism and magnetic materials, 2012,324(7) :1312-1316.
  • 5CUI J D, LI L L, BIAN H J. Immobilization of cross-linked phenylalanine ammonia lyase aggregates in mieroporous silica gel [J]. PLoS One, 2013,8:e53542.
  • 6SHELDON R A. Cross-linked enzyme aggregates as industrial biocatalysts[J]. Organic Process Research and Development, 2011,15:213- 220.
  • 7AYTAR B S, BAKIR U. Preparation of cross-linked tyrosinase aggregates[J].Process Biochemistry, 2008,43:125-131.
  • 8CUI J D, ZH S, SUN L M. Cross-linked enzyme aggregates of phenyla]anine ammonia lyase: Novel biocatalysts for synthesis of L-phen- ylalanine [J]. Applied Biochemistry and Biotechnology, 2012,167(4):835-844.
  • 9CUI J D, SUN L M, LI L L. A simple technique of preparing stable CLEAs of phenylalanine ammonia lyase using co-aggregation with starch and bovine serum albumin [J]. Applied Biochemistry and Biotechnology, 2013,170 (8) : 1827-1837.
  • 10CUI J D, ZHANG B Z. Comparison of culture methods on exopolysaccharide production in the submerged culture of Cordyceps militaris and process optimization [J]. Letters in Applied Microbiology, 2011,52:123-128.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部