期刊文献+

一种改进的群搜索优化算法 被引量:1

An Improved Group Search Optimization Algorithm
下载PDF
导出
摘要 群搜索优化算法是建立在群居动物觅食行为基础上的新型启发式算法,具有算法简单、易于实现的特点.标准群搜索优化算法(GSO)基于发现-追随的寻优策略,由于追随者搜索模式过于单一,从而容易陷入局部最优.为了提高标准GSO算法的收敛速度与收敛精度,提出一种改进群搜索优化算法(IGSO).在该算法中,发现者保持原有的寻优方式,追随者执行鱼群算法的寻优模式,通过引入鱼群算法的觅食、追尾、聚群与随机行为,使搜索方式多样化,可以同时考虑种群的个体最优与群体最优,从而有效避免陷入局部最优.通过6个基准测试函数对两种算法进行比较,实验结果表明,改进的群搜索优化算法优于标准群搜索优化算法. Group Search Optimization (GSO) is a swarm intelligence approach inspired by animal searching behavior and group living theory. It is simple and efficient, and easy to implement. The searching mode of the scrounger is oversimplified, so it falls into local optimum easily. In order to enhance its convergence speed and precision, the improved Group Search Optimization (IGSO) is proposed. Inheriting the strategy of producer- scrounger of GSO, IGSO introduces the strategy of the Artificial Fish Swarm (AFS) algorithm to the behavior of the scrounger. By introducing prey, fellow, swarm and leap of the AFS algorithm, searching forms is diver- sified, as well as the best individuals of group and best groups of population can be considered, IGSO can ef- fectively avoid the local optimum. Six benchmark functions are used to evaluate the performance of two algo- rithms. Experimental results show that IGSO is able to achieve better results than standard GSO.
出处 《郑州大学学报(工学版)》 CAS 北大核心 2015年第2期105-109,共5页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金资助项目(61263004) 甘肃省自然科学基金资助项目(1212RJZA071)
关键词 群搜索优化算法 函数优化 人工鱼群算法 group searching optimization function optimization artificial fish swarm algorithm
  • 相关文献

参考文献8

  • 1张雯雰,滕少华,李丽娟.改进的群搜索优化算法[J].计算机工程与应用,2009,45(4):48-51. 被引量:19
  • 2HE S,WU Q H,SUNDERS J R. Group search optimi- zer: an optimization algorithm inspired by animal searching behavior [ J ]. Evolutionary Computation, 2009,13 (5) :973 - 990.
  • 3KANG Q, LAN T, YAN Y, et al. Group search optimi- zer based optimal location and capacity of distributed generations[ J ]. Neuro Computing, 2012,78 ( 1 ) : 55 - 63.
  • 4CHEN Y, ZHU Q, xu H. Finding rough set reducts with fish swarm algorithm [ J ]. Knowledge Based Sys- tems,2015 (2) :74 -77.
  • 5XIE H B,LIU F,LI L J,et al. Research on topology optimization of truss structures based on the improved group search optimizer [ J ]. Neuro Computing, 2013, 12 (ll) :707 -712.
  • 6刘宪林,乔云飞.基于人工鱼群算法的电力系统稳定器参数优化研究[J].郑州大学学报(工学版),2013,34(5):68-73. 被引量:2
  • 7刘锋,覃广,李丽娟.快速被动群搜索优化算法及其在空间结构中的应用[J].工程设计学报,2010,17(6):420-425. 被引量:6
  • 8李鹏.基于群搜索优化算法的配电网重构[J].电网技术,2012,6(28):43-47.

二级参考文献33

  • 1谢志棠,宗秀红,钟志勇,王克文,张建芬.计及FACTS装置的概率特征根分析[J].电力自动化设备,2004,24(8):13-17. 被引量:9
  • 2闫健杰,赵书强,崔小磊.基于改进遗传算法的多机系统PSS参数协调优化[J].华北电力大学学报(自然科学版),2006,33(2):16-20. 被引量:7
  • 3Whitley D,Rana S,Dzubera J,et al.Evaluating evolutionary algorithms[J].Artificial Intelligence, 1996,85:245-276.
  • 4Holland J H.Adaptation in natural and artificial systems[M].Ann Arbor:The University of Michigan Press,1975:228-234.
  • 5Rechenberg I.Evolutionstrategie: Optimieung technischer systeme nach Prinzipien der biologischen evolution[D].Frommann-Holzboog, Stuttgart, 1973.
  • 6Fogel L J,Owens A J,Walsh M J.Artificial intelligence through simulated evolution[M].New York:John Wiley,1966.
  • 7Colomi A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C]//Proceedings of the First European Conference on Artificial Life,Paris,France, 1991 : 134-142.
  • 8Kenndy J,Eberhart R C.Particle Swarm Optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks, Piscataway, NJ, USA, 1995 : 1942-1948.
  • 9He S,Wu Q H.A novel group search optimizer inspired by animal behavioural[C]//2006 IEEE Congress on Evolutionary Computation, 2006:4415-4421.
  • 10Wolpert D H,Macready W G.No free lunch theorems for search[J]. IEEE Trans on Evolutionary Computation, 1997,1 ( 1 ) : 67-82.

共引文献24

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部