期刊文献+

基于神经网络的盲源分离算法的视觉诱发电位提取

Blind Source Extraction of Evoked Potentials Separate Neural Network Algorithm based on Visual
下载PDF
导出
摘要 诱发电位(evoked potential,EP)的分析是神经疾病诊断和评价脑功能的重要手段之一,从而微弱电生理信号的提取受到生物信号处理研究人员的关注。本文在研究基于神经网络的盲源分离算法的基础上将其运用于模式翻转视觉诱发电位(PRVEP)波形提取,通过与常用的平均叠加算法得到的波形进行对比,得出基于神经网络的盲源分离算法能够有效地提取视觉诱发电位。 Evoked potential (evoked potential, EP) analysis is one of the important means bout the evaluation of neurological disease diagnosis and brain function, so the researchers focus on the faint electrical physiological signal extraction. The paper based on the study of blind source separation algorithm based on neural network and its application in extraction of pattern visual evoked potentials (PRVEP), comparing with the common waveform of average algorithm obtained, the blind source separation algorithm based on neural network can effectively extract the visual evoked potential.
作者 王蓉
机构地区 广东工业大学
出处 《可编程控制器与工厂自动化(PLC FA)》 2015年第4期82-84,共3页 Programmable controller & Factory Automation(PLC & FA)
关键词 神经网络 盲源分离 模式翻转视觉诱发电位(PRVEP) Neural Network Blind Source SeparationPattern Reversal Visual Evoked Potential (PRVEP)
  • 相关文献

参考文献6

二级参考文献12

  • 1Chan T H,Ma W K,Chi C Y,et al.A convex analysis framework for blind separation of non-negative sources[J].IEEE Transactions on Signal Processing,2008,56(10):5120-5134.
  • 2Erdogan A T.A simple geometric blind source separation method for bounded magnitude sources[J].IEEE Transactions on Signal Processing,2006,54(2):438-449.
  • 3Sidiropoulos N D,Davidson T N,Luo Z Q.Transmit beamforming for physical-layer multicasting[J].IEEE Transactions on Signal Processing,2006,54(6):2239-2251.
  • 4Farid H,Adelson E H.Separating reflections and lighting using independent component analysis[C].//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Fort Collins,Colorado,1999:262-267.
  • 5Boscolo R,Pan H,Roychowdhury V P.Independent component analysis based on nonparametric density estimation[J].IEEE Transaction on Neural Networks,2004,15(1):55-65.
  • 6Correa N,Adali T,Calhoun V D.Performance of blind source separation algorithms for fMRI analysis using a group ICA method[J].Magnetic Resonance Imaging,2007,25(5):684-694.
  • 7Davies M E,James C J.Source separation using single channel ICA[J].Signal Processing,2007,87(8):1819-1832.
  • 8Prasad R,Saruwatari H,Shikano K.Blind separation of speech by fixed-point ICA with source adaptive negentropy approximation[J].IEICE Transactions on Fundamentals of Electronics,Communications and Computer Science,2005,88(7):1683-1692.
  • 9Diamantaras K I,Theodoridis S,Pitas I.Second order Hebbian neural networks and blind source separation[C].Eusipco:European Signal Processing Conference,Rhodes,Greece,1998:1317-1320.
  • 10Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995,7(6):1129-1159.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部