期刊文献+

无细胞的合成生物技术—多酶催化与生物合成 被引量:7

Cell-free synthetic biotechnology—multi-enzyme catalysis and biosynthesis
原文传递
导出
摘要 无细胞合成生物技术由于其高度可控及体外代谢途径构建方法多样,能够完成许多体内代谢途径无法完成的工作.其主体思想即体外多酶催化体系的构建,通过模拟生物细胞内的多酶体系,在体外反应系统中加入能进行顺序反应的多种酶,使底物经过顺序的多步反应,一次得到最终产物,使生产过程大大简化.将多酶催化体系进行共固定化,可以实现多酶体系的协同反应和底物通道效应,提高反应效率.未来几年,无细胞合成生物技术有望成为生物燃料、大宗化学品以及医药产品的低成本生物制造平台. Cell-free synthetic biotechnology is emerging as a powerful platform technology capable of compl- ementing work in cellular in vivo systems. This is due to the extraordinary level of control and surprising diversity of approaches available for building biosynthetic systems without constraints that limit cellular engineering. The main idea of cell-free synthetic biotechnology is the construction of multi-enzyme catalysis system, which assembly of a number of purified enzymes and coenzymes for the production of desired products through complicated biochemical reaction networks. Multi-enzyme catalysis system can be co-immobilized to reduce the scope of the enzyme and the substrate during the reaction, achieve substrate channel effects, transferring the product of one enzyme to an adjacent cascade enzyme or cell without complete mixing with the bulk phase, the efficiency of the reaction is improved. Cell-free synthetic biotechnology can be regarded as an integrated platform based on three elements--pathway reconstruction, enzyme engineering, and reactor engineering. With developments in stable building blocks and modules, cell-free synthetic biotechnology has the potential to become a low-cost biomanufacturing platform for biofuels production. We may harness the potential of cell-free systems to profoundly change how we study, control, and tune cellular ensembles for biomanufacturing any chemical or material from renewable resources, both quickly and on demand.
出处 《中国科学:化学》 CAS CSCD 北大核心 2015年第5期429-437,共9页 SCIENTIA SINICA Chimica
基金 国家高技术研究发展计划(2012AA02A704) 国家杰出青年科学基金(21425624)资助
关键词 无细胞 多酶催化体系 共固定化 底物通道 合成生物技术 cell-free, multi-enzyme catalysis system, co-immobilized, substrate channeling, synthetic biotechnology
  • 相关文献

参考文献43

  • 1宋凯.合成生物学导论.北京:科学出版社,2012.
  • 2王俊姝,祁庆生.合成生物学与代谢工程[J].生物工程学报,2009,25(9):1296-1302. 被引量:19
  • 3Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Keasling JD. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440:940-943.
  • 4Martin V J, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature, 2003, 21:796-802.
  • 5Forster AC, Church GM. Towards synthesis of a minimal cell. Mol Syst Biol, 2006, 2:45.
  • 6Zhang YHP. Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng, 2010, 105:663-677.
  • 7Zhang YHP, Sun J, Zhong JJ. Biofuel production by in vitro synthetic enzymatic pathway biotransformation. Curr Opin Biotechnol, 2010, 21 : 663-669.
  • 8Wang Y, Huang W, Sathitsuksanoh N, Zhu Z, Zhang YHP. Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymaticpathways. Chem Biol, 2011, 18:372-380.
  • 9Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR. An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol, 2008, 4:220.
  • 10Zhang YHP, Myung S, You C, Zhu Z, Rollin JA. Toward low-cost biomanufacturing through in vitro synthetic biology: bottom-up design. J Mater Chem, 2011, 21:18877-18886.

二级参考文献54

  • 1Nevoigt E, Fischer C, Mucha O, et al. Engineering promoter regulation. Biotechnol Bioeng, 2007, 96(3): 550-558.
  • 2Alper H, Fischer C, Nevoigt E, et al. Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA, 2005, 102(36): 12678-12683.
  • 3Alper H, Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng, 2007, 9(3): 258-267.
  • 4Jensen PR, Hammer K. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol, 1998, 64(1): 82-87.
  • 5Mandal M, Boese B, Barrick JE, et al. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell, 2003, 113(5): 577-586.
  • 6Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818-822.
  • 7Stoltenburg R, Reinemann C, Strehlitz B. SELEX--a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng, 2007, 24(4): 381-403.
  • 8Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505.
  • 9Bauer G, Suess B. Engineered riboswitches as novel tools in molecular biology. J Biotechnol, 2006, 124(1): 4-11.
  • 10Werstuck G, Green MR. Controlling gene expression in living cells through small molecule-RNA interactions. Science, 1998, 282(5387): 296.

共引文献18

同被引文献36

  • 1刘强,许鑫华,任光雷,王为.酶生物燃料电池[J].化学进展,2006,18(11):1530-1537. 被引量:15
  • 2黄志华,刘铭,王宝光,张延平,曹竹安.甲酸脱氢酶用于辅酶NADH再生的研究进展[J].过程工程学报,2006,6(6):1011-1016. 被引量:27
  • 3翁云宣.聚乳酸合成、生产、加工及应用研究综述[J].塑料工业,2007,35(B06):69-73. 被引量:37
  • 4萨姆布鲁克J 拉塞尔DW.黄培堂 王嘉玺 朱厚础 等译.分子克隆实验指南[M]第3版[M].北京:科学出版社,2002.8..
  • 5王立梅,齐斌.L-乳酸应用及生产技术研究进展[J].食品科学,2007,28(10):608-612. 被引量:39
  • 6Banuelos M,Gancedo C. In situ study of the glycolytic pathway in Saccharomyces cerevisiae[J].Arch Microbiol,1978,117:197–201. DOI:10.1007/BF00402308.
  • 7Fessner WD. Systems Biocatalysis: Development and engineering of cell-free“artificial metabolisms”for preparative multi-enzymatic synthesis[J].New Biotechnology,2015,32(6):658–664. DOI:10.1016/j.nbt.2014.11.007.
  • 8Welch P,Scopes RK. Studies on cell-free metabolism: Ethanol production by a yeast glycolytic system reconstituted from purified enzymes[J].Journal of Biotechnology,1985,2:257–273. DOI:10.1016/0168-1656(85)90029-X.
  • 9Peralta-Yahya P,Zhang FZ,del Cardaryre S,et al. Microbial engineering for the production of advanced biofuels[J].Nature,2012,488(7411):320–328. DOI:10.1038/nature11478.
  • 10Woodward J,Orr M,Cordary K,et al. Biotechnology: enzymatic production of biohydrogen[J].Nature,2000,405:1014–1015. DOI:10.1038/35016633.

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部