期刊文献+

用有限元方法求解界面特征值问题 被引量:2

Finite Element Methods for Solving Interface Eigenvalue Problems
原文传递
导出
摘要 用有限元方法计算椭圆型界面特征值问题,实验数据显示近似特征值的变化规律:界面特征值问题中系数的间断性对协调和非协调Crouzeix-Raviart有限元特征值的收敛性并无影响,而且对协调有限元特征值外推以后得到高精度的解,相应的外推值还提供特征值下界;Crouzeix-Raviart元特征值提供特征值下界,这对一般有界区域如"镂空"型区域也成立.另外,还展示近似特征函数的图形. In this paper, we solve interface eigenvalue problems by conforming and non- conforming finite element methods. The experiment data show that the optimal convergence rates may not be influenced by these discontinuous coefficients in interface eigenvalue problems and may be improved after extrapolation. The extrapolation eigenvalues and nonconforming Crouzeix-Raviart eigenvalues provide lower bounds of exact eigenvalues, which also holds for general bounded domains like hollow domains. Furthermore, the approximate eigenfunctions are displayed visually by use of figures.
作者 李琴 姜威
出处 《数学的实践与认识》 北大核心 2015年第9期234-241,共8页 Mathematics in Practice and Theory
基金 北京工商大学2014年度青年基金(QNJJ2014-17) 国家自然科学基金(11426039 11471329)
关键词 界面特征值问题 有限元方法 外推 Interface eigenvalue problems finite element methods extrapolation
  • 相关文献

参考文献25

  • 1Cai Z Q, Ye X, and Zhang S. Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations [J]. SIAM J Numer Anal, 2011, 49: 1761-1787.
  • 2Frei S, and Richter T. A locally modified parametric finite element method for interface problems [J]. SIAM J Numer Anal, 2014, 52 (5): 2315-2334.
  • 3Ji H F, Chen J R, and Li Z L. A symmetric and consistent immersed finite element method for interface problems [J]. J Sci Comput, 2014, 61: 533-557.
  • 4Bernardi C, and Verfiirth R. Adaptive finite element methods for elliptic equations with non-smooth coefficients [J]. Numer Math, 2000, 85: 579-608.
  • 5Bonito A A, Devore R, and Nochetto H, Adaptive R. finite element methods for elliptic problems with discontinuous coefficients [J]. SIAM J Numer Anal, 2013, 51(6): 3106-3134.
  • 6Cai Z Q, and Zhang S. Recovery-based error estimators for interface problems: conforming linear elements [J]. SIAM J Numer Anal, 2009, 47: 2132-2156.
  • 7Cai Z Q, and Zhang S. Recovery-based error estimators for interface problems: mixed and noncon- forming finite elements [J]. SlAM J Numer Anal, 2010, 48: 30-52.
  • 8Wei H, Chen L, Huang Y, and Zheng B. Adaptive mesh refinement and superconvergence for two dimensional interface problems [J]. SIAM J Sci Compnt, 2014, 36 (4): A1478-A1499.
  • 9Mao D, Shen L H, and Zhou A H. Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates [J]. Adv Compnt Math, 2006, 25: 135-160.
  • 10Babuska I, and Osborn J. Eigenvalue Problems [C]// in: Ciarlet P G, Lions J L. (Ed.), Finite Element Methods (Part 1), Handbook of Numerical Analysis, vol,2, Elsevier Science Publishers, North-Holand, 1991: 640-787.

二级参考文献18

共引文献20

同被引文献18

  • 1陈纪修.数学分析[M].北京:高等教育出版社,2002..
  • 2同济大学数学系.高等数学(第六版)[M].北京:高等教育出版社,2012.
  • 3赵树嫄.微积分(第三版)[M].北京:中国人民大学出版社,2007.
  • 4列夫·托尔斯泰(刘辽逸译).战争与和平[M].北京:人民文学出版社,1987.
  • 5Lin Q and Lin J F.Finite element methods:accuracy and improvement[M].Science Press,Beijing,2006.
  • 6Li M X,Lin Q and Zhang S H.Extrapolation and superconvergence of the Steklov eigenvalue problem[J].Adv Comput Math,2010,33:25-44.
  • 7Li Q,Lin Q and Xie H.Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations[J].Appl Math,2013,58:129-151.
  • 8林府标,杨一都.三维Poisson方程特征值的四种有限元解及比较[J].数学的实践与认识,2009,39(8):212-223. 被引量:2
  • 9蔺云.论挖掘数学哲理性知识之思维教学[J].数学教育学报,2009,18(4):27-30. 被引量:10
  • 10林群.微积分看作0.9[J].数学的实践与认识,2013,43(7):260-265. 被引量:4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部