摘要
设p1,…,ps(1≤s≤3)是互异的奇素数,则当D=p_1…p_s,1≤s≤3时,不定方程组x^2-12y^2=1与y^2-Dz^2=4仅有正整数解D=195,(x,y,z)=(97,28,2).
If Dis not a perfect square positive integer which has at most three distinct prime factors, then the system of indefinite equations in title only has positive integer D = 195, (x, y, z) = (97, 28, 2).
出处
《数学的实践与认识》
北大核心
2015年第9期289-293,共5页
Mathematics in Practice and Theory
基金
国家自然科学基金(11371291)
关键词
不定方程
基本解
整数解
公解
奇素数
递归序列
indefinite equation
fundamental solution
integer solution
common solution
odd prime
recursive sequence