期刊文献+

利用对比度最优准则的压控振荡器调频非线性误差估计与校正方法 被引量:2

Method of voltage controlled oscillator frequency nonlinearity estimation and correction based on contrast optimization
下载PDF
导出
摘要 针对压控振荡器调频非线性误差的准确估计与校正问题,提出一种以一维距离像对比度最优为准则的自适应估计与校正方法。本方法建立引入温度变量的压控振荡器频率特性模型,并据此估计出某一温度值对应的调频非线性误差,在对中频回波进行误差补偿和一维脉压后,以一维距离像的对比度最优作为迭代收敛准则,实现调频非线性误差的最优估计与校正。仿真和实测数据结果表明,该方法充分考虑了温度因素对压控振荡器输出频率的影响,能够在不增加硬件复杂度的前提下,通过算法实现对调频非线性误差的估计、跟踪与补偿。与传统基于硬件电路进行估计或校正的方法相比,新方法无需由硬件组成闭环估计通道,且具有实时性强、运算量小、补偿精度高的优点,对于克服实际工程应用中压控振荡器器件的参数漂移问题具有重要指导意义。 In order to accurately estimate and correct the frequency nonlinearity of voltage controlled oscillator, a novel approach based on contrast optimization of range profiles is proposed, which will perform nonlinearity estimation and correction adaptively. A temperature-varying tuning model is established in the proposed method, the nonlinearity is obtained with a given temperature by using this model. The nonlinearity is removed from the beat signal, and the range profiles of targets are derived by pulse compression. According to the contrast of range profile, the real temperature is iteratively estimated. The contrast of range profile will converge toward the maximum, so an optimal estimation of temperature, which is nonlinearity, is achieved. Simulation and experimental results show that the proposed approach with consideration on environmental temperature variation can estimate and correct the nonlinearity without any additional hardware circuit. Compared with the conventional approaches, this method can not only accurately estimate and track the frequency nonlinearity of voltage controlled oscillator in real-time, but also has low hardware complexity and computing cost, which is the significant to solve the problem of voltage controlled oscillator frequency drift.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2015年第2期65-71,共7页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(61271441 61372161)
关键词 压控振荡器 调频非线性校正 对比度最优 频率漂移 voltage controlled oscillator frequency nonlinearity correction contrast optimization frequency drift
  • 相关文献

参考文献1

二级参考文献9

  • 1Scheiblhofer S, Schuster S, Stelzer A. High-speed FMCW radar frequency synthesizer with DDS based linearization [ J ]. IEEE Microwave and Wireless Components Letters, 2007, 17 (5) : 397 -399.
  • 2Mitomo T, Ono N, Hoshino H, et al. A 77 GHz 90 nm CMOS transceiver for FMCW radar applications [ J ]. IEEE Journal of Solid-State Circuits, 2010, 45 (4) : 928 - 937.
  • 3Meta A, Hoogeboom P, Ligthart L P. Signal processing for FMCW SAR [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 ( 11 ) : 3519 - 3532.
  • 4Lim T S, Koo V C, Ewe H T, et al. High-frequency phase error reduction in SAR using particle swarm of optimization algorithm [ J ]. Journal of Electromagnetic Waves and Applications, 2007, 21 (6): 795-810.
  • 5Koo V C, Lira T S, Rao M V C, et al. A GA-based autofocus technique for correcting high-frequency SAR phase error [ J ]. Journal of Electromagnetic Waves and Applications, 2004, 18 (6) : 781 -795.
  • 6Zhao Z Y, Li X Y, Chang W G. LFM-CW signal generator based on hybrid DDS-PLL structure [ J ]. Electronics Letters, 2013, 49(6) : 391 -393.
  • 7Best R E. Phase-locked loops: theory, design, and applications[ M]. New York: McGraw-Hill, 1984.
  • 8Gardner F M. Phaselock techniques [ M ]. Wiley- Interscience, 2005.
  • 9Wang W Q. Suppressing phase locked loop gain fluctuations in wideband linearly frequency modulated waveform synthesizers[ J ]. Fluctuation and Noise Letters, 2012, 11 (02).

共引文献6

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部