期刊文献+

一族带有参数的三阶收敛迭代方法

A family of third-order convergence iterative method with parameters
下载PDF
导出
摘要 根据经典牛顿法和Runge-Kutta方法的思想,文章提出了解非线性方程f(x)=0近似解的一族带有参数的迭代方法,即通过设定不同的参数值,从而得到不同的迭代方法。经收敛性分析和证明,得出该族方法都至少三阶收敛到单根,目前一些已知改进的牛顿迭代法都是该族方法中的特殊情况。最后用数值试验证明了该方法与同阶收敛性质方法相比具有一定的有效性。 According to the Newton' s method and Runge-Kutta method, this paper puts forward an it- erative method with parameters for solving the approximate solution of nonlinear equations f(x)=0. By setting different parameter values, different iterative methods can be gotten. Through the conver- gence analysis and proof, it is known that the method is at least convergent to simple root of third or- der. Some existing improved Newton iterative methods are the special cases of this method. Finally, the results of numerical experiments show that this method has effectiveness compared with other third-order iterative methods.
作者 江平 裕静静
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期717-720,共4页 Journal of Hefei University of Technology:Natural Science
关键词 牛顿迭代 非线性方程 收敛阶 数值试验 Newton's iterative method~ nonlinear equation~ order of convergence~ numerical experi-ment
  • 相关文献

参考文献7

二级参考文献24

  • 1冯新龙,张知难.求解非线性方程的加权迭代方法[J].大学数学,2006,22(4):85-88. 被引量:11
  • 2王霞,赵玲玲,李飞敏.牛顿方法的两个新格式[J].数学的实践与认识,2007,37(1):72-76. 被引量:36
  • 3OZBAN A Y. Some variants of Newton's methods[J]. Applied Mathematics Letters,2004,17:677-682.
  • 4Changbum Chun. Construction of third-order modifications of Newton's method[J]. Appl Math and Comp,2007, 189:662-668.
  • 5Kou Jisheng, Li Yitian, Wang Xiuhua. Third-order modification of Newton's method[J]. Comp and Appl Math, 2007,205:1-5.
  • 6Thukral R. Introduction to a Newton-type method for solving nonlinear equations[J]. Appl Math and Comp, 2008,195:663-668.
  • 7Cautschi W. Numerical analysis., an introduction[M]. Boston: Birkhauser, 1997: 50-100.
  • 8Ozban A Y. Some variants of Newton's methods[J]. Ap plied Mathematics Letters, 2004,17 (9) : 677-682.
  • 9Chun C B. Some fourth-order iterative methods for solving nonlinear equations [J]. Appl Math Comput, 2008, 195:1454-459.
  • 10Phillips G M,Taylor P J.Theory and applications of numerical analysis[M].New York:Academic Press,Inc,1973:161-186.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部