期刊文献+

沟槽栅IGBT关键技术研究 被引量:3

Research on the Key Technology of Trench Gate IGBT
下载PDF
导出
摘要 与平面栅IGBT相比,沟槽栅IGBT能显著改善通态压降与关断能量的折衷关系,更适用于中低压高频应用领域。针对沟槽栅IGBT技术的挑战(主要包含沟槽刻蚀、栅氧生长、沟槽多晶硅填充等),研究并开发了沟槽栅一系列关键工艺:形貌优良的沟槽槽型,质量完好的栅氧生长工艺以及具备优良均匀性的原位掺杂多晶硅填充工艺等。采用改进工艺后的沟槽栅IGBT芯片具有良好的电学性能,展示出优异的栅氧特性,顺利通过了高温动、静态等多项测试,较平面栅IGBT体现出压降和损耗优势。 Compared with planar IGBT, trench gate IGBT has obviously improved the balance between on-state loss and switching loss and is more suitable to be used in the low-medium voltage and high frequency application field. Aiming at the challenges of the trench gate process include the trench etch processing, gate oxidation, poly filling etc., it researched and developed a series of key processes of trench gate IGBT and then obtained good trench etch profile, an excellent gate oxidation method and good uniformity and integrality of poly filling by amorphous poly doping. With the improved process method, the trench gate IGBT chips had good electrical performances, especially on gate oxidation charactersistic. It passed both static and dynamic tests at high temperature, and reflected obvious advantages at Vceon and power loss when compared to planar IGBT.
出处 《大功率变流技术》 2015年第2期57-61,共5页 HIGH POWER CONVERTER TECHNOLOGY
关键词 沟槽栅IGBT 沟槽刻蚀 栅氧生长 多晶硅填充 trench gate IGBT trench etch gate oxidation poly filling
  • 相关文献

参考文献11

  • 1Jayant B B. Fundamentals of power semiconductor devices [ M ] . New York: Springer, 2008.
  • 2Udrea F. IGBT: concept, state-of-the art technologies, and derivatives [ C ] //Short-course at 21st ISPSD. Barcelona, 2009.
  • 3罗海辉,黄建伟,Ian Deviny,刘国友.沟槽栅IGBT深槽工艺研究[J].大功率变流技术,2013(2):8-12. 被引量:4
  • 4Chang H R, Baliga B J, Kretchmer J W, et al. Insulated gate bipolar transistor (IGBT) with a trench gate structure [ C ] //IEEE Electron Devices Meeting. Vol.33. 1987: 674-677.
  • 5Miyashita S. U-series IGBT modules [ J ] . Fuji Electric Review, 2005, 51(2): 43-47.
  • 6刘国友,覃荣震.大功率IGBT技术现状及其发展趋势[Z].IGBT专集,2014:12-18.
  • 7Dewar S, Linder S, von Arx C, et al. Soft Punch Through (SPT) - Setting new Standards in 1200V IGBT [ C ] //PCIM. Nuremberg, 2000.
  • 8Lane J M, Bogart K H A, Klemens F P, et al. The role of feedgas chemistry, mask material, and processing parameters in profile evolution during plasma etching of Si(100) [ J ] . J. Vac. Scl. Technol., A, 2000, 18(5): 2067-2079.
  • 9Panda S, Wise R, Mosden A, et al. Effect of rare gas addition on deep trench silicon etch [ J ] . Microelectronic Engineering, 2004, 75(3): 275-284.
  • 10Campbell S A. The Science and Engineering of Microelectronic Fabrication [ M ] . 2nd ed. New York: Oxford, 2001.

二级参考文献13

  • 1Harada M, Minato T, Takahashi H, et al. 600 V trench IGBT in comparison with planar IGBT[C]//Proc. of the 6th ISPSD, Davos, 1994: 411-416.
  • 2Takahashi H. Cartier stored trench-gate bipolar transistor (CSTBT)-a novel power device for high voltage application[R]. 8th ISPSD, Hawaii, 1996: 349-352.
  • 3Jayant Baliga B. Fundamentals of power semiconductor devices [M]. New York: Springer, 2008.
  • 4Udrea F. IGBT: concept, state-of-the art technologies, and derivatives [R]. Short-course at 21st ISPSD, Barcelona, 2009.
  • 5Kanschat P, Riathing H, Umback F, et al. 600 V-IGBT3: A detailed analysis of outstanding static and dynamic properties[C]//Proc. of the PCIM 2004, Nurnberg: 27-30.
  • 6Miyashita S. U-series IGBT modules[J]. Fuji Electric Review, 2005, 51 ( 2 ): 43-47.
  • 7Sumitomo M. Low loss IGBT with partially narrow mesa structure [R]. 24th ISPSD, Bruges, 2012: 17-20.
  • 8Vyvoda M A, Lee H. Effects of plasma conditions on the shapes of features etched in CI2 and HBr plasmas. I. Bulk crystalline silic on etching[J]. J. Vac. Scl. Teehnol. A, 1998, 16 (6): 3247-3258.
  • 9Lane J M, Bogart K H A. The role of feedgas chemistry, mask material, and processing parameters in profile evolution during plasma etching of Si(100)[J]. J. Vac. Scl. Technol. A, 2000, 18 (5): 2067-2078.
  • 10Arnold J C, Sawin H H. Charging of pattern features during plasma etching[J]. J. Appl. Phys. 1991, 70(10): 5314-5317.

共引文献3

同被引文献21

  • 1维捷斯拉夫·本达,约翰·戈沃.功率半导体器件理论及应用[M].吴郁译.北京:化学工业出版社,2005.
  • 2Hu Jiaxi,Liu Wenye,Yang Jinfeng.Application of Power Electronic Devices in Rail Transportation Traction System[C]//Proceedings of the 27th ISPSD.Hong Kong:IEEE,2015:7-11.
  • 3Frank Wolter,Wolfgang Roesner,Maria Cotorogea,et al.Multidimensional trade-off considerations of the 750V Micro Pattern Trench IGBT for Electric Drive Train Applications[C]//Proceedings of the 27th ISPSD.Hong Kong:IEEE,2015:105-108.
  • 4Katsunori Azuma,Akitoyo Konno.NEW 3.3k V IGBT Module with Low Power Loss and High Current[C]//PCIM Europe.Nuremberg:VDE,2013:345-350.
  • 5Takayuki Kushima,Katsunori Azuma,Yasuhiro Nemoto,et al.1800A/3.3kV IGBT Module using Advanced Trench HiGT Structure and Module Design Optimization[C]//PCIM Europe.Nuremberg:VDE,2014:345-350.
  • 6Laska T,Pfirsch F,Hirler F,et al.1 200 V-trench-IGBT study with square short circuit SOA[C]//Proceedings of the 10th ISPSD.Kyoto:IEEE,1998:433-436.
  • 7Tetsuo Takahashi,Yasuhiro.Yoshiura.The 6th-Generation IGBT&Thin Wafer Diode for New Power Modules[J].Mitsubishi Electric Advance,2011(6):5-7.
  • 8Ryu Kamibaba,Kazuya Konishi,Yusuke Fukada,et al.Next Generation 650V CSTBTTM with improved SOA fabricated by an Advanced Thin Wafer Technology[C]//Proceedings of the 27th ISPSD.Hong Kong:IEEE,2015:29-32.
  • 9Junji Yamada,Yoshiharu Yu,John F Donlon.New Mega Power Dual IGBT Module with Advanced 1200V CSTBT Chip[J].Industry Applications Conference,2002(3):158-163.
  • 10Milady S,Silber D,Pfirsch F.Simulation Studies and Modeling of Short Circuit Current Oscillations in IGBTs[C]//Proceeding of the 20th ISPSD.Barcelona:IEEE,2009:37-40.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部