期刊文献+

分数阶微分方程边值问题非平凡解的存在性

Existence of nontrivial solutions for boundary value problems of fractional differential equations
原文传递
导出
摘要 运用Leray-Schauder度理论,在相关算子第一特征值条件下,获得分数阶微分方程边值问题{Dα0+u(t)=-f(t,u(t)),t∈[0,1]u(0)=u'(0)=u'(1)=0非平凡解的存在性,其中α∈(2,3]是一实数,Dα0+是α阶Riemann-Liouville分数阶导数。 By applying the theory of Leray-Schauder degree,the existence of nontrivial solutions for the boundary value problems of fractional differential equations{Dα0 + u(t)=-f(t,u(t)),t∈[0,1] u(0)=u′(0)=u′(1)=0 is considered under some conditions concerning the first eigenvalue corresponding to the relevant linear operator.Hereα∈(2,3]is a real number,Dα0 + is the standard Riemann-Liouville fractional derivative of order α.
作者 马燕 张克玉
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2015年第5期68-73,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10971046) 山东省自然科学基金资助项目(ZR2012AQ007) 山东大学自主创新基金资助项目(2012TS020)
关键词 分数阶边值问题 非平凡解 LERAY-SCHAUDER度 fractional boundary value problem nontrivial solution Leray-Schauder degree
  • 相关文献

参考文献15

  • 1郑祖庥.分数微分方程的发展和应用[J].徐州师范大学学报(自然科学版),2008,26(2):1-10. 被引量:49
  • 2SAMKO S, KILBAS A, MARICHEV O. Fractional integrals and derivatives: theory and applications,gordon and breach[M]. London: Taylor and Francis Ltd, 1993.
  • 3PODLUBNY I. Fractional differential equations, in: mathematics in science and engineering[M]. New York: Academic Press, 1999.
  • 4BAI Z. On positive solutions of a nonlocal fractional boundary value problem[J]. Nonlinear Analysis, 2010, 72(2):916-924.
  • 5XU J, YANG Z. Multiple positive solutions of a singular fractional boundary value problem[J]. Applied Mathematics E-Note, 2010, 10:259-267.
  • 6XU J, WEI Z, DONG W. Uniqueness of positive solutions for a class of fractional boundary value problem[J]. Appl Math Lett, 2012, 25(3):590-593.
  • 7许晓婕,胡卫敏.一个新的分数阶微分方程边值问题正解的存在性结果[J].系统科学与数学,2012,32(5):580-590. 被引量:11
  • 8EL-SHAHED M. Positive solutions for boundary value problems of nonlinear fractional differential equation[J]. Abs Appl Anal, 2007, 2007(1):1-8.
  • 9YANG X, WEI Z, DONG W. Existence of positive solutions for the boundary value problem of nonlinear fractional differential equations[J]. Commun Nonlinear Sci Numer Simulat, 2012, 17(1):85-92.
  • 10LI Q, SU H, WEI Z. Existence and uniqueness result for a class of sequential fractional differential equations[J]. J Appl Math Comput, 2012, 38(1/2):641-652.

二级参考文献58

  • 1LiHongyu,SunJingxian.POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEM FOR A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS[J].Annals of Differential Equations,2005,21(2):153-160. 被引量:19
  • 2徐明瑜,谭文长.中间过程、临界现象——分数阶算子理论、方法、进展及其在现代力学中的应用[J].中国科学(G辑),2006,36(3):225-238. 被引量:34
  • 3Miller K S,Ross B. An introduction to the fractional calculus and fractional differential equations[M]. New York: John Wiley & Sons, 1993.
  • 4Podlubny I. Fractional differential equations[M]. San Diego:Acad Press,1999.
  • 5Samko S G,Kilbas A A,Maritchev O I. Integrals and derivatives of the fractional order and some of their applications[M]. Minsk: Naukai Tekhnika, 1987.
  • 6Benchohra M, Henderson J, Ntouyas S K,et al. Existence results for fractional order functional differential equations with infinite delay[J]. J Math Anal Appl,2008,338(2) :1340.
  • 7Oldham K B,Spanier J. The fractional calculus[M]. New York:Acad Press,1974.
  • 8Kiryakova V. Generalized fractional calculus and applications[G]//Pitman Research Notes in Math:301. Harlow: Longman, 1994.
  • 9Blair G W S. Some aspects of the search for invariants[J]. Br J for Philosophy of Sci,1950,1(3):230.
  • 10Blair G W S. The role of psychophysics in theology[J]. J of Colloid Sci,1947(2) -21.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部