期刊文献+

整合序列与蛋白相互作用特征的亚细胞定位预测 被引量:6

Prediction of Protein Subcellular Localization by Incorporating Sequence and Protein-Protein Interaction Features
下载PDF
导出
摘要 提出了一种基于序列和PPI特征的距离公式,可综合序列氨基酸组成和PPI对象、强弱等信息对两个蛋白质的相似性进行表征,并在此基础上提出了一种用于蛋白质亚细胞定位预测的K近邻算法。利用留一法对性能进行了评估,结果显示,在序列基础上加入PPI特征,可明显有助于亚细胞定位的预测;同时基于上述距离的K近邻算法也优于使用相同特征的SVM算法,表明该算法可以对蛋白质的亚细胞定位信息进行准确有效的预测。 Information of protein subcellular localization is indispensable to study protein function, as a protein can perform its function only after it is correctly transported to a specific subcellular compartment. Thus it is very important to provide accurate prediction of protein subcellular localization in biological studies. In contrast to sequence features (e.g. amino acids composition) that are widely used in subcellular localization prediction, features extracting protein-protein interaction (PPI) are largely ignored, although they reflect the co-localization information of different proteins. In this study, we propose a novel distance formula based on both protein sequence and PPI features, which precisely measures the similarity of proteins by incorporating protein information including amino acid composition, PPI and the corresponding interaction scores. Based on this distance formula, we further introduce a k-nearest neighbor (KNN) algorithm for predicting subcellular localization. The results of leave-one-out test on a benchmark dataset show that PPI features significantly improve the performance of protein subcellular localization. Meanwhile, this KNN algorithm also outperformes SVM algorithm adopting the same features, suggesting the efficiency of the proposed algorithm for predicting protein subcellular localization.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第3期467-470,共4页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61101061 31100955) 中央高校基本科研业务费专项资金(WK2100230011) 高等学校博士学科点专项科研基金(20113402120028)
关键词 生物信息学 K近邻算法 蛋白质相互作用 亚细胞定位 bioinformatics K-nearest neighbor algorithm protein-protein interaction subcellular localization
  • 相关文献

参考文献12

  • 1KENICHIRO I, KENTA N. Prediction of subcellular locations of proteins: Where to proceed?[J]. Proteomics, 2010(10): 3970-3983.
  • 2CHOU Kuo-chen, WU Zhi-cheng, XIAO Xuan. iLoc-Hum: Using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites[J]. Mol BioSyst, 2012(8): 629-641.
  • 3DU Pu-feng, YU Yuan. SubMito-PSPCP: Predicting protein submitochondrial locations by hybridizing positional specific physicochemical properties with pseudoamino acid compositions[J]. Biomed Res lnt, 2013: 263829.
  • 4PIERLEONI A, MARTELLI P L, CASADIO R. MemLoci- Predicting subcellular localization of membrane proteins in eukaryotes[J]. Bioinformatics, 2011, 27(9): 1224-1230.
  • 5XIE Dan, LI Ao, WANG Ming-hui, et al. LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST[J]. Nucleic Acids Research, 2005, 33(suppl 2): 105-110.
  • 6LI Li-qi, ZHANG Yuan, ZOU Ling-yun, et al. An ensemble classifier for eukaryotic protein subcellular location prediction using gene ontology categories and amino acid hydrophobicity[J]. PLoS ONE, 2012, 7( 1): e31057.
  • 7MARC1N M, MARC1N P, JANUSZ B M. MetaLocGramN: a recta-predictor of protein subcellular localization for Gram-negative bacteria[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2012, 1824(12): 1425-1433.
  • 8CHOU Kuo-chen, SHEN Hong-bin. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0[J]. PLoS ONE, 2010, 5(4): e9931.
  • 9LIU Han-qing, BECK T N, GOLEMIS E A, et al. Integrating in silico resources to map a signaling network[M]. Methods Mol Biol, 2014, 1101: 197-245.
  • 10LI Bi-qing, YOU Jin, CHEN Lei, et al. Identification of lung-cancer-related genes with the shortest path approach in a protein-protein interaction network[J]. BioMed Research International, 2013: 267375.

同被引文献52

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部