期刊文献+

随机利率分数布朗运动模型下的欧式双向期权定价 被引量:5

Pricing of Bi-direction European Option Under Fractional Brownion Motion with Stochastic Interest Rates
下载PDF
导出
摘要 在经典的期权定价模型中,假设股票价格服从标准几何布朗运动,但金融实证表明用分数布朗运动描述股票价格过程更贴近市场.假设标的资产服从几何分数布朗运动,无风险利率r(t)服从Vasicek扩展模型,红利率q(t),波动率σ(t)为随时间变化的确定函数,运用拟鞅及测度变换的方法求出了欧式双向期权的定价公式. In the classical option pricing model stock price was supposed to follow standard geometric Brownian motion. However financial evidence shows that using fractional Brownian motion to describe the process of stock price is more closer to the market. In this paper, we assume that underlying asset price fol- lows geometric fractional Brownian motion,the riskless rate r(t) follows Vasicek extended model,dividend rate q(t),and the volatility a(t) of the stock are all time-varying certain functions. By the help of quasi- martingale and change of measure, we get the pricing formulas of bi-direction European option.
作者 白婷 李翠香
出处 《河北师范大学学报(自然科学版)》 CAS 2015年第3期190-196,共7页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(11401159) 河北省自然科学基金(A2012205028)
关键词 分数布朗运动 拟鞅 Vasicek扩展模型 欧式双向期权 fractional Brownian motion quasi-martingale~ Vasicek extended model bi-direction European option
  • 相关文献

参考文献8

二级参考文献21

  • 1刘韶跃,杨向群.分数布朗运动环境中标的资产有红利支付的欧式期权定价[J].经济数学,2002(4):35-39. 被引量:32
  • 2李荣华,戴永红,常秦.参数依赖于时间的复合期权(英文)[J].工程数学学报,2005,22(4):692-696. 被引量:13
  • 3Black F., Scholes M. S., The pricing of option and corporate liabilities, J. Polit. Econ., 1973, 81: 637-659.
  • 4Merton R. C., Theory of rational option pricing, BEll J. Econ., 1973, 4:141 183.
  • 5Lin S. J., Stochastic analysis of fractional Brownian motion, fractional noises and applications, SIAM Review., 1995, 10: 422-437.
  • 6Rogers L. C. G., Arbitrage with fractional Brownian motion, Mathematical Finance., 1997, 7: 95-105.
  • 7Duncan T. E., Hu. Y., PasikDuncan B., Stochastic calculus for fractional Brownian motion, I. Theory, SIAM J. Control Optim., 2000, 38: 582-612.
  • 8Hu Y., 0ksendal., Fractional white noise calculus and application to finance, J. Inf. Dim Anal Quantum Probab. Rel. Top., 2003, 6: 1-32.
  • 9Necula C., Option pricing in a fractional Brownian motion environment, Academy of Economic Studies, Preprint.
  • 10Merton R. C., On the pricing of corporate debt: the risk structure of interest rates, Journal of Finance, 1974, 29(2): 449-470.

共引文献68

同被引文献30

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部