摘要
为了准确评估喀斯特森林生物量,以青冈栎黄樟群落中罗伞为研究对象,采用回归模型估测法,从含水率、生物量时空异质性、生物量模型拟合3个方面进行生物量研究。结果表明:罗伞树叶和树干的含水率明显大于林木其他各组分,各组分含水率的大小为树叶>树干>干材>树枝>树皮;各组分生物量在空间上分配关系为干材>树枝>树叶>树皮,并且各个组分生物量均随着胸径增大而增大。通过对解析木生物量的回归分析,得出罗伞各组分生物量的最优回归模型:Y树干=-1 664.800 0x2+299.630 0x-1.276 5(R2=0.926 9),Y树皮=11.543 0x2+19.985 0x+0.032 1(R2=0.939 5),Y树枝=-567.560 0x2+98.880 0x-0.994 6(R2=0.943 9),Y树叶=-121.690 0x2+48.549 0x-0.399 9(R2=0.937 0),Y干材=-1 624.700 0x2+274.240 0x-1.190 9(R2=0.912 0),Y地上部分=-2 302.400 0x2+441.650 0x-2.553 2(R2=0.953 9)。
In order to accurately evaluate the biomass of karst forest,the biomass from moisture content, biomass spatial heterogeneity,biomass model fitting was studied using regression estimation method with Brassaiopsis glomerulata Kuntze as material. The results showed that the moisture contents of leaf and trunk of Cinnamomum parthenoxylon Kuntze were greater than that of the other components of trees, moisture content order was leaf 〉 trunk 〉 bole 〉 branch 〉 bark;the biomass order was bole 〉 branch 〉 leaf 〉bark, and the biomass of each components increased with the increase of diameter at breast height. Through regression analysis of estimation of wood biomass,the biomass optimal regression model of each components were obtained as follows:Ytrunk = - 1 664. 800 0x2 + 299. 630 0x - 1. 276 5(R2 = 0. 926 9), Y bark =11. 543 0x2 +19. 985 0x +0. 032 1(R2 = 0. 939 5),Ybranch = - 567. 560 0x2 + 98. 880 0x - 0. 994 6 (R2 =0. 943 9),Yleaf = -121. 690 0x2 + 48. 549 0x - 0. 399 9(R2 = 0. 937 0),Ybole = - 1 624. 700 0x2 +274. 240 0x - 1. 190 9(R2 = 0. 912 0),Yoverground = - 2 302. 400 0 x2 + 441. 650 0x - 2. 553 2( R2 =0. 953 9).
出处
《河南农业科学》
CSCD
北大核心
2015年第4期125-130,共6页
Journal of Henan Agricultural Sciences
基金
贵州省社会发展攻关项目[黔科合SY字(2011)3108]
关键词
喀斯特森林
罗伞
生物量
模型
karst forest
Brassaiopsis glomerulata Kuntze
biomass
model