期刊文献+

布尔型贝叶斯网络参数学习 被引量:2

Parameter Learning of Boolean Bayesian Networks
下载PDF
导出
摘要 布尔型贝叶斯网络是一类由布尔型变量组成的网络,它能够以线性多变量函数描述,使计算和处理上灵活高效。通过运用连接树算法对络进行分块化处理的方法,可以提高算法的效率,然后以传统的最大似然估计方法对布尔型网络的参数进行学习。服从同一分布律的贝叶斯网络参数学习算法发展比较成熟,这类以狄利克雷或者高斯分布为基础的算法在应用领域中难以发挥其应有的价值。相比之下,基于布尔型贝叶斯网络下的参数学习更贴近于应用,在人工智能和数据挖掘等领域有很好的发展前景。 Boolean Bayesian network is a class of Bayesian networks which are made up of Boolean varia-bles. The method to describe the network with a multi-linear function is flexible and efficient to compute and process variables. By introducing Junction Tree algorithm,the network can be divided into blocks which can make it easy to calculate. Then the traditional maximum likelihood estimation method was used for learning Boolean networks. Parameter learning algorithm following the same distribution is more ma-ture,but this kind of algorithm based on Dirichlet or Gaussian distribution is difficult to play its proper val-ue in practice. In contrast,parameter learning based on Boolean networks gets close to applications. It has good prospects for development in areas such as artificial intelligence and data mining.
出处 《四川兵工学报》 CAS 2015年第5期155-158,共4页 Journal of Sichuan Ordnance
关键词 贝叶斯网络 参数学习 布尔型变量 连接树 最大似然估计算法 Bayesian networks parameter learning Boolean variables junction tree,maximum likeli-hood estimation
  • 相关文献

参考文献13

  • 1俞奎,王浩,姚宏亮,陈栋梁.并行的贝叶斯网络参数学习算法[J].小型微型计算机系统,2007,28(11):1972-1975. 被引量:6
  • 2Heckerman D. A tutorial on learning with Bayesian net- works[ M]. US :Springer Netherlands, 1998.
  • 3Jensen F,Jensen F V, Dittmer S L. From influence diagrams to junction trees [ C ]//Proceedings of the Tenth internation- al conference on Uncertainty in artificial intelligence. Mor- gan Kaufmann Publishers Inc. , 1994:367 - 373.
  • 4Van den Broeck G, Darwiche A. On the complexity and ap- proximation of binary evidence in lifted inference[ C]//Ad- vances in Neural Information Processing Systems. [ S. 1. ] : [ s. n. ] ,2013:2868 -2876.
  • 5史志富,张安.贝叶斯网络理论及其在军事系统中的应用[M].北京:国防工业出版社,2012:28-29.
  • 6Masegosa A R, Moral S. An interactive approach for Bayes- ian network learning using domain expert knowledge[ J]. In-ternational Journal of Approximate Reasoning,2013,54(8 ) : 1168 - 1181.
  • 7张少中,章锦文,张志勇,韩美君,王秀坤.面向大规模数据集的贝叶斯网络参数学习算法[J].计算机应用,2006,26(7):1689-1691. 被引量:4
  • 8Park C Y, Laskey K B, Costa P C G, et al. Multi-Entity Bayesian Networks Learning In Predictive Situation Aware- ness[ C]//Proceedings of the 18th International Command and Control Technology and Research Symposium. [ S. 1. ] : [ s. n. ] ,2013.
  • 9黄世强,高晓光,任佳.DDBN的无人机决策推理模型参数学习[J].火力与指挥控制,2013,38(1):26-29. 被引量:1
  • 10Lauritzen S L. The EM algorithm for graphical association models with missing data [ J ]. Computational Statistics & Data Analysis, 1995,19 (2) : 191 - 201.

二级参考文献39

  • 1马建伟,张国立,谢宏,周春雷,王晶.利用人工鱼群算法优化前向神经网络[J].计算机应用,2004,24(10):21-23. 被引量:34
  • 2J Pearl. Probabilistie Reasoning in Intelligent Systems: Networks of Plausible Inference [ C ]. San Francisco: Morgan Kaufmann, 1988.
  • 3Sowmya Ramachandran. Theory Refinement of Bayesian Networks with Hidden Variables [ D ]. Austin : The University of Texas at Austin, 1998.
  • 4DHerkerman and J Breese. A new look at causal independence [ C ]. Proc. Of the Tenth Conference on Uncertainty in Artificial Intelligence, 1994. 286-292.
  • 5COOPER GF, HERSKOVITS E. A Bayesian Method for the induction of probabilistic networks from data [J]. Machine Learning,1992, 9(4) : 309 - 347.
  • 6SPIEGELHALTER DJ , LAURITZEN SL. Sequential Updating of Conditional Probabilities on Directed Graphical Structures[ J]. Networks, 1990, 20(5) : 579 - 605.
  • 7GOLMARD JL, MALLET A. Learning probabilities in causal trees from incomplete databases[J]. Artificial Intelligence, 1991, 5(1) :93 - 106.
  • 8LAURITZEN SL. The EM algorithm for graphical association models with missing data[J]. Computational Statistics and Data Analysis,1995,19(2) : 191 -201.
  • 9THIESSON B, MEEK C, HECKERMAN D. MSR-TR-99.31, Accelerating EM for large databases[R]. Microsoft Research, 2001.
  • 10NEAL R, HINTON G. A view of the EM algorithm that justifies incremental, sparse, and other variants[ A]. Learning in Graphical Models[ C]. Kluwer Academic Publishers, 1998. 355 -371.

共引文献20

同被引文献24

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部