摘要
在部署测试监测井点、制定合理的测试时间时,准确预测待测井的曲线类型具有重要的意义。从多组判别分析基本原理出发,结合油田实际监测井点的试井曲线类型,以及各井的测井和生产动态资料,优选出与试井曲线类型相关的井和储层参数,建立曲线类型预判模型。通过多次反复筛选参数并结合总错判率,最终建立了以储层厚度、含水率、测井渗透率和产量为主要因素的八厂油田试井曲线类型预测模型,模型回代错判率为9.09%,现场应用符合率为85.7%,可用于预判待测井曲线类型。研究成果为现场工作人员优化监测井点、制定合理测试时间、提升监测成果质量等提供了科学的指导。
When deploying monitoring well and setting appropriate time for well test,accurate prediction of well logging curve types undoubtedly has important significance. Based on the principle of multiple discriminant analysis we combine the reality well test curve types and the well logging and production performance data of oilfield monitored wells,we optimize the well and reservoir parameters through repeated screening parameters. In the end,we established a model considering reservoir thickness, moisture content,logging permeability and the oil production. The result of the error rates is 9.09%and the coincidence rate is 85.7%,which means the model can be used in anticipation for logging curve type. This method provides a scientific and reasonable guidance for workers to formulate reasonable testing time,optimize the monitoring well and improve the quality of monitoring results.
出处
《西南石油大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第3期115-121,共7页
Journal of Southwest Petroleum University(Science & Technology Edition)
基金
国家自然科学优秀青年科学基金(51304164)
关键词
试井
曲线类型
多组判别
预测模型
well test
curve types
multi-group discriminant
prediction model