期刊文献+

考虑前2阶模态组合的拉索非线性参数共振研究 被引量:6

Nonlinear Parametric Resonance of Cable in Consideration of First Two Modes Combination
下载PDF
导出
摘要 针对水平拉索的非线性参数共振问题,首先将桥面简化为集中质量块,建立拉索在桥面谐波位移激励下的非线性微分方程,并考虑拉索前2阶模态组合的影响,进而推导索-桥耦合的无量纲非线性运动方程组,最后以实际斜拉桥工程的拉索为例,对拉索发生参数共振的响应进行数值模拟分析。研究表明:当桥面质量块无量纲固有频率Ω3与拉索1阶无量纲固有频率Ω1M之比为2∶1时,拉索的前2阶模态位移和质量块均出现"拍"振现象,且以第1阶模态为主振动模态;而当桥面质量块无量纲固有频率Ω3与拉索2阶无量纲固有频率Ω2M之比为2∶1时,仅有第2阶模态位移和质量块出现"拍"振现象,拉索以第2阶模态为主模态振动,此时第1阶模态位移未出现"拍"振现象;考虑前2阶模态组合时,当质量块的激励频率与系统的固有频率满足参数共振频比关系2∶1时,系统将发生大幅"拍"振现象,且第1阶主模态的位移响应要远大于第2阶主模态的位移响应。 An approach for investigating the nonlinear parametric resonance of horizontal cable was proposed in this paper. Firstly, the bridge deck was simplified as concentrated mass block, and nonlinear differential equation of cable under harmonic displacement excitation of bridge deck was derived. Meanwhile the influence of first two modes of cable was considered. Then the non- linear vibration differential equations were derived in dimensionless style by considering the cable- bridge coupled effect. At last, a numerical simulation analysis of cable parametric resonance was carried out based on a real stayed-cable bridge. The results show that when the ratio of deck mass block dimensionless frequency Ω3 to first cable dimensionless frequency Ω1M is 2 : 1, the beat phe- nomenon occurs between the first two cable modal displacements and mass block, and the first mode is the major mode of vibration. However, when the ratio of deck mass block dimensionless frequency Ω3 to second cable dimensionless frequency Ω1M is 2 : 1, the beat phenomenon occurs on- ly between the second cable modal displacement and mass block, and the second mode is major mode of vibration. This study indicated that for the first two modes of cable, when the paramet- ric resonance ratio relation of mass block excitation frequency and system natural frequency is 2. 1, the large amplitude beat vibration of system occurs, and the displacement amplitude of first mode is much larger than that of the second mode.
出处 《防灾减灾工程学报》 CSCD 北大核心 2015年第2期249-255,共7页 Journal of Disaster Prevention and Mitigation Engineering
基金 国家自然科学青年基金项目(51208088) 江西省青年科学家(井冈之星)培养对象计划项目(2013)资助
关键词 斜拉桥拉索 索-桥耦合系统 参数共振 模态组合 位移响应 扫频分析 cable of stayed bridge cable-bridge coupling system parametric resonance modalcombination displacement response frequency sweep analysis
  • 相关文献

参考文献14

  • 1欧进萍.重大工程结构的累积损伤与安全度评定[C]∥走向21世纪的中国力学,中国科协第9次"青年科学家论坛"报告文集.北京:清华大学出版社,1996
  • 2欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国科学基金,2005,19(1):8-12. 被引量:120
  • 3Ruscheweyh H P.The mechanism of rain-wind-induced vibration[J].Bridge Aerodynamics,1999:1041-1047.
  • 4Hikami Y,Shiraishi N.Rain-wind induced vibrations of cables in cable-stayed bridge[J].Journal of Wind Engineering and Industrial Aerodynamics,1988,(29):409-418.
  • 5Persoon A J,Noorlander K.Full-scale measurements on the Erasmus bridge after rain/wind induced cable vibrations[C]∥Wind Engineering into the 21st Century.Balkema,Rotterdam:[s.n.],1999.1019-1026.
  • 6Tagata G.Harmonically forced,finite amplitude vibration of a string[J].Journal of Sound and Vibration,1977,51(4):483-492.
  • 7Takahashi K.Dynamic stability of cables subjected to an axial periodic load[J].Journal of Sound and Vibration,1991,144(2):323-330.
  • 8Nielsen S R K,Kirkegaard P H.Super and combinatorial harmonic response of flexible elastic with small sag[J].Journal of Sound and Vibration,2002,251(1):79-102.
  • 9Warnitchai P,Fujino Y,Susumpow T.A non-linear dynamic model for cable and its application to a cablestructure system[J].Journal of Sound and Vibration,1995,187(4):695-712.
  • 10亢战,钟万勰.斜拉桥参数共振问题的数值研究[J].土木工程学报,1998,31(4):14-22. 被引量:96

二级参考文献24

  • 1任淑琰,顾明.斜拉桥拉索静力构形分析[J].同济大学学报(自然科学版),2005,33(5):595-599. 被引量:15
  • 2欧进萍,吴波.被动耗能减振系统的研究与应用进展[J].地震工程与工程振动,1996,16(3):72-96. 被引量:56
  • 3刘勇,博士学位论文,1996年
  • 4亢战,硕士学位论文,1995年
  • 5钟万勰,计算结构力学与最优控制,1993年
  • 6奈弗 A H,非线性振动,1990年
  • 7林家浩,计算结构动力学,1989年
  • 8沈崇棠 刘鹤年.非牛顿流体力学及其应用[M].北京:高等教育出版社,1989.41-54.
  • 9Harris C M,Crede C E.Shock and vibration handbook[M].2nd Edition.New York:McGraw-Hill,1976.
  • 10Makris N,Constantinou M C.Viscous dampers:testing,modeling,application in vibration and seismic isolation[R].Buffalo:State University of New York NCEER report-90-0028.1990.

共引文献238

同被引文献51

  • 1刘延柱.圆截面弹性细杆的平面振动[J].力学与实践,2005,27(3):32-34. 被引量:2
  • 2薛纭,刘延柱,陈立群.超细长弹性杆的分析力学问题[J].力学学报,2005,37(4):485-493. 被引量:27
  • 3刘延柱.黏性介质中圆截面弹性细杆的平面振动[J].物理学报,2005,54(11):4989-4993. 被引量:5
  • 4Gattulli V, Martinelli L, Perotti F, et al.. Nonlinear oscillations of cables under harmonic loading using analytical and finite element models [J]. Computer Methods in Applied Mechanics and Engineering, 2004,193 (I/2) .. 69-85.
  • 5Lilien J L, Pinto Da Costa A. Vibration amplitudes caused by parametric excitation of cable stayed struc- tures[J]. Journal of Sound and Vibration, 1994,174 (1) :69-90.
  • 6Yamaguchi H, Fujino Y. Stayed Cable Dynamics and Its Vibration Control[C]. In: Proceeding of the Inter- national Symposium of Advances in Bridge Aerody- namics, Rotterdam: Balkema, 1998 .. 235-253.
  • 7Fujino Y,Warnitchai P,Pacheco B M. An experimen- tal and analytical study of auto parametric resonance in 3D of model of cable-stayed-beam[J]. Nonlinear Dynamics, 1993,4:111 138.
  • 8Tagata G. Harmonically forced finite amplitude vibra- tion of a string[J]. Journal of Sound and Vibration, 1977, (4) :483-492.
  • 9Wu Q, Takahashi K, Nakamura S. Non linear re- sponse of cables subjected to periodic support excita- tion considering cable loosening[J]. Journal of Sound and Vibration, 2004,27 (1/2) 453-463.
  • 10赵跃宇,王涛,康厚军.斜拉索主参数共振的稳定性分析[J].动力学与控制学报,2008,6(2):112-117. 被引量:16

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部