期刊文献+

负-零-正折射率超常介质平板结构中的透射横向位移特性分析

Lateral shifts of transmission light from slab structure with negative-zero-positive index metamaterial
下载PDF
导出
摘要 针对光波在负-零-正折射率超常介质平板结构中的传播,利用Artmann的稳态相位法研究了光学Dirac点附近的透射横向位移特性。讨论了横向位移随入射角度、频率和平板厚度的变化关系,发现该结构中的横向位移可以达到波长的几十甚至几百倍之多并且在Dirac点附近能够实现正负变化。进一步研究了全反射情形下的横向位移特性和光子隧穿现象、证实了横向位移的Hartman效应。另外,由于材料的特殊线性色散,发现横向位移在靠近临界角时,随着角度增大而减小;而在远离临界角时随着角度增大而增大。研究结果将在集成光学和光学器件方面产生应用可能,也将进一步促进石墨烯量子结构中电子传播的类光学现象研究。 For light waves propagating in a slab structure with a negative-zero-positive index metamaterial in the core, properties of the lateral shifts of the transmission light were investigated in detail by employing Artmann's stationary phase method. The results show that, near the Dirac point(DP), the lateral shift can vary from positive to zero then to negative and is dozens of times even hundreds of times higher than the wavelength, which is strongly dependent on the incident angle, frequency, and the thickness of the metamaterial. For the slow wave mode, the lateral shifts and the photon tunneling were further studied. Because of the Hartman effect, the lateral shift tends to a saturation value when the barrier thickness increases, and displays different properties when the incident angle chosen near and far away from the critical angle. These results may lead to potential applications in integral optics and optical-based devices and also suggest analogous phenomena of valance electron in single-layered carbon graphene.
出处 《量子电子学报》 CAS CSCD 北大核心 2015年第3期257-262,共6页 Chinese Journal of Quantum Electronics
基金 安徽省自然科学基金(1508085QA22) 安徽省高等教育提升计划省级科学研究一般项目(TSKJ2014B19)
关键词 光电子学 横向位移 负-零-正折射率超常介质 石墨烯 optoelectronics lateral shift negative-zero-positive index metamaterial graphene
  • 相关文献

参考文献23

  • 1Novoselov K S, Geim A K, Morozov S, et al. Electric field effect in atomically thin carbon films[J].Science, 2004, 306: 666-669.
  • 2Raghu S, Haldane F D M. Analogs of quantum Hall effect edge states in photonic crystals[J].Phys. Rev. A, 2006, 78(3): 033834.
  • 3Haldane F D M, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J].Phys. Rev. Lett., 2008, 100(1): 013904.
  • 4Wang L G, Wang Z G, Zhang J X, et al. Realization of Dirac point with double cones in optics[J].Opt. Lett., 2009, 34(10): 1510-1512.
  • 5Sepkhanov R, Nilsson J, Beenakker C. Proposed method for detection of the pseudospin-1 2 Berry phase in a photonic crystal with a Dirac spectrum[J].Phys. Rev. B, 2008, 78(4): 045122.
  • 6Wang L G, Wang Z G, Zhu S Y. Zitterbewegung of optical pulses near the Dirac point inside a negative-zero-positive index metamaterial[J].EPL, 2009, 8(4): 47008.
  • 7Longhi S. Klein tunneling in binary photonic superlattices[J].Phys. Rev. B, 2010, 81(7): 075102.
  • 8Bahat-Treidel O, Peleg O, Grobman M, et al. Klein tunneling in deformed honeycomb lattices[J].Phys. Rev. Lett., 2010, 104(6): 063901.
  • 9Wang X L, Shen M, Jiang A, et al. Lateral shifts and photon tunneling in a frustrated total internal reflection structure with a negative-zero-positive index metamaterial[J].Opt. Lett., 2013, 38(19): 3949-3952.
  • 10Shen M, Ruan L X, Wang X L, et al. Tunable band gap near the Dirac point in nonlinear negative-zero-positive index metamaterial waveguide[J].Phys. Rev. A, 2011, 83(4): 045804.

二级参考文献12

  • 1Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene [J]. Rev. Mod. Phys., 2009, 81(1): 109.
  • 2Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics [J]. Nature Photonics, 2010 4: 611.
  • 3Novoselov K S, McCann E, Morozov S V, et al. Unconventional quantum Hall effect and Berry's phase, of 2r in bilayer graphene [J]. Nat. Phys., 2006, 2: 177.
  • 4Tan Y W, Zhang Y, Bolotin K, et al. Measurement of scattering rate and minimum conductivity in graphene [J]. Phys. Rev. Lett., 2007, 99: 246803.
  • 5Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Klein paradox in graphene [J]. Nat. Phys., 2006, 2: 620.
  • 6Cheianov V V, Fal'ko V, et al. The focusing of electron flow and a Veselago lens in graphene p-n junctions [J]. Science, 2007, 315: 1252.
  • 7Park C H, Son Y W, Yang L, et al. Electron beam supercollimation in graphene superlattices [J]. Nano. Lett., 2008, 8: 2920.
  • 8Ghosh S, Sharma M. Electron optics with magnetic vector potential barriers in graphene [J]. J. Phys.: Condens. Matter, 2009, 21: 292204.
  • 9Beenakker C W J, Sepkhanov R A, Akhmerov A R, et al. Quantum Goos-Hnchen effect in graphene [J]. Phys. Rev. Lett., 2009, 102: 146804.
  • 10Zhang F M, He Y, Chen X. Guided modes in graphene waveguides [J]. Appl. Phys. Left., 2009, 94: 212105.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部