期刊文献+

不同方法制备Pt/C催化剂对燃料电池催化活性的影响 被引量:5

Influence of different preparation methods of Pt / C catalysts on electric catalytic activity
下载PDF
导出
摘要 分别采用高压有机溶剂法和回流法不同的制备方法,制备了含铂20%(w)的催化剂Pt/C-HP(高压有机溶剂法)和Pt/C-Reflux(回流法)。实验发现:对于甲醇的阳极氧化过程,高压有机溶胶法制得的催化剂活性较高,催化剂Pt/C-HP甲醇氧化峰电流密度是Pt/C-Reflux的1.5倍,且远远高于商业催化剂JM3000含铂20%(w)Pt/C催化剂,催化剂Pt/C-Reflux甲醇氧化峰电流密度与商业催化剂JM3000催化剂相当。采用X射线衍射(XRD)、透射电镜(TEM)、循环伏安法(CV)等方法对催化剂进行表征的结果表明:高压有机溶胶法制得的催化剂分散性比回流法制得的催化剂好,使得前者催化剂的电化学活性比表面积得到了显著的提高。 High-pressure colloidal method( denoted as Pt/C-HP) and the reflux method( denoted as Pt/C-Reflux) were used to syn-thesis catalyst 20%( w) Pt/C. We found that Pt/C-HP showed much higher activity than Pt/C-Reflux during the anodic oxidation of methanol. The peak current density for Pt/C-HP was 1. 5 times as high as that of Pt/C-Reflux and it was also much higher than that of the commercial JM3000(20%w)Pt/C catalyst. The peak current density for Pt/C-Reflux is similar with the commercial JM3000 (20%,w)Pt/C catalyst. X-ray diffraction analysis(XRD),transmission electron microscopy(TEM)and the cyclic voltammograms CV method) etc. revealed that the dispersion for Pt/C-HP is better than that of Pt/C-Reflux whereas the electrochemical special sur-face area of Pt/C-HP increased significantly.
机构地区 肇庆学院
出处 《化学研究与应用》 CAS CSCD 北大核心 2015年第5期684-688,共5页 Chemical Research and Application
基金 广东省自然科学基金博士启动项目(S2012040007383)资助 广东省教育厅科技创新项目(2013KJCX0193)资助 肇庆学院2014年大学生创新创业训练项目(DC201440)资助
关键词 直接甲醇燃料电池 电催化剂 甲醇氧化 制备方法 Direct methanol fuel cell Electrocatalyst Methanol oxidation Preparing method
  • 相关文献

参考文献15

  • 1Ramesh P, Itkis M E, Tang J M, et al. SWNT-MWNT Hy- brid architecture for proton exchange membrane fuel cellcathodes [ J ]. J Phys Chem C,2008,112 (24) :9089-9094.
  • 2Book C, Paquet C, Couillard M, et al. Size-selected synthe-sis of PtRu nano-catalysts:reaction and size control mech- anism[J]. J Am Chem Soc,2004,126(25) :8028-8037.
  • 3Cherty R,Xia W,Kundu S,et a/. Effect of reduction tem- perature on the preparation and characterization of Pt-Ru nanoparticles on multiwalled carbon nanotubes [ J ]. Lang- mu/r,2009,25 (6) :3853-3860.
  • 4Lee C H, Park H B, Park C H, et al. Preparation of high- performance polymer electrolyte nanoeomposites through nanoscale silica particle dispersion [ J ]. J. Power Sources, 2010,195 (5) : 1325-1332.
  • 5Seger B, Kongkanand A, Vinodgopal K,et al. Platinum dis- persed on silica nanoparticle as electroeatalyst for PEM fu- el cell[J]..I Electroanal Chem,2008,621 (2): 198-204.
  • 6Fang B, Chaudhari N K, Kim M-S, et al. Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel Cell[ J ]. J Am Chem Soc, 2009,131 (42) : 15330-15338.
  • 7Zhang Y, Erkey C. Preparation of platinum-nation-earbon black nanoeompesites via a supereritieal fluid route as electrocatalysts for proton exchange membrane fuel cells [ J ]. Industrial&Engineering Chemistry Research,2005,44 (14) :5312-5317.
  • 8Liao S J, Holmes K A, Tsaprailis H, et a/. High perform- ance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol [ J ]. J Am Chem Sac, 2006,128 ( 11 ) :3504-3505.
  • 9Wang R, Liao S J, Ji S. High performance Pd-based cata-lysts for oxidation of formic acid [ J ]. J Power Sources, 2008,180( 1 ) :205-208.
  • 10Wu Y N, Liao S J, Liang Z X, eta/. High-performance core-shell PdPt@ Pt/C catalysts via decorating PdPt alloy cores with Pt[J]. J Power Sources,2009,194(2) :805- 810.

同被引文献24

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部