期刊文献+

分数阶随机微分方程的修正隐式数值格式 被引量:3

Corrected implicit schemes for fractional stochastic differential equation
原文传递
导出
摘要 对H>1/2且随机积分为前向积分的分数阶布朗运动驱动的随机微分方程,为改善显式Euler格式和Milstein格式的稳定性,基于修正隐式技术构造了修正隐式Euler格式和Milstein格式,证明了修正隐式格式较显式格式有更大的稳定步长集,且在一定条件下修正隐式Euler格式是A稳定的.数值模拟显示,步长在稳定步长集内时数值格式稳定,步长在稳定步长集边界附近时误差几乎不改变,而步长在稳定步长集外时数值格式极度不稳定,从而验证了修正隐式格式在保持数值稳定性上的优越性和稳定步长集的合理性. For H 〉 1/2 and forward stochastic integral for stochastic differential equation driven by frac- tional Brownian motion,in order to improve the stability of explicit Euler scheme and Milstein scheme, we construct corrected implicit Euler scheme and Milstein scheme based on the corrected implicit tech- nology. Then we prove these corrected implicit schemes have greater stable stepsets than explicit scheme,and in certain conditions the corrected implicit Euler scheme is A-stability. Finally, It is showen that the numerical schemes are stable when the step size is within the stable step set, the numerical er- rors are steady when the step size is near the set's bound, but the numerical schemes are extremely un- stable when the step size is out of the set. Thus the corrected implicit scheme have advantages of stability and the definition of stable step set is reasonable.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期451-455,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(11171238) 电子信息控制重点实验室基金项目(2013035)
关键词 分数阶随机微分方程 修正隐式技术 Euler格式 Milstein格式 Fractional stochastic differential equation Corrected implicit technique Euler scheme Mil-stein scheme
  • 相关文献

参考文献9

  • 1Biagini F, Hu Y, Oksendal B, et al. Stochastic cal- culus for fractional Brownian motion and applica- tions[M]. Berlin/New York: Springer, 2008.
  • 2Oksendal B. Fractional Brownian motion in finance [EB/OL]. http://urn, nh. no/URN: NBN:no- 8076, 2003.
  • 3Mishura Y, Shevchenko G. The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion[J]. Stoehastics An International Journal of Probability and Stochastic Processes, 2008, 80 (5) : 489.
  • 4Deya A, Neuenkirch A, Tindel S. A Milstein-type scheme without Lvy area terms for SDEs driven by fractional Brownian motion[J]. Annales de Hnstitut Henri Poincar6, Probabilit6s et Statistiques, Institut Henri Poincar, 2012, 48(2) : 518.
  • 5Davie A M. Differential equations driven by rough paths: an approach via discrete approximation[EB/ OL]. arXiv:0710. 0772, 2007.
  • 6Kloeden P E, Platen E. Numerical solution of sto- chastic differential equations [M]. Berlin/New York: Springer, 1995.
  • 7Mao X R. Stochastic differential equations and their applications[M]. Chichester: Horwood Publishing Limited, 1997.
  • 8Nourdin I. A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimen- sion one[M]. S6minaire de probabilit6s XLI. Ber- lin/Heidelberg: Springer, 2008.
  • 9Russo F, Vallois P. Forward, backward and sym- metric stochastic integration[J]. Probability Theory and Related Fields, 1993, 97(3) : 403.

同被引文献14

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部