期刊文献+

k-集合上与算术函数关联矩阵的行列式(英文) 被引量:1

Determinants of matrices associated with arithmetic functions on k-set
原文传递
导出
摘要 设S={x1,…,xn}是由n个不同元素组成的正整数集合,f是一个算术函数.用(f(S))=(f(xi,xj))表示一个n×n的矩阵,其(i,j)项为f在xi与xj的最大公因子(xi,xj)处的取值,用(f[S])=(f[xi,xj])表示另一个n×n的矩阵,其(i,j)项为f在xi与xj的最小公倍数[xi,xj]处的取值.若xi与xj的最大公因子(xi,xj)=k,1≤i≠j≤n,则称S是k-集合.本文主要给出了定义在k-集合上的矩阵(f(S))和(f[S])的行列式的计算公式.进而作为推论给出了det(f(S))|det(f[S])的条件. Let S = {xl ,…… ,xn } be a set of n distinct positive integers and f be an arithmetic function. We use (f(S)) = (f(xi ,xi)) (respectively. (f[S]) = (f[xi ,xi]) to denote the n X n matrix having f evalua- ted at the greatest common divisor (xi,xi ) (respectively, the least common multiple [-xi,xj ] ) of xl and xi as its i,j- entry. Let k ≥1 be an integer. The set S is said to be a k- set if (xi ,xi) = k for 1 ≤ i ≠ j ≤ n. In this paper,we obtain the determinants of the matrices (f(S)) and (f[S]) on the k- set S. As a corol- lary. we find that det (f(S)) divides det (f[S]) under some natural conditions.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期456-460,共5页 Journal of Sichuan University(Natural Science Edition)
基金 攀枝花学院校级一般项目(2013YB10) 攀枝花学院培育项目(2012PY08) 四川省应用基础研究计划项目(2013JY0125) 四川省应用基础研究计划项目(2013JY0125)
关键词 算术函数 矩阵 行列式 整除式 Arithmetic function, Matrix, Determinant, Divisibility
  • 相关文献

参考文献15

  • 1Smith H J . On the value of a certain arithmetical de- terminant [J]. Proc London Math Soc, 1875-1876, 7:208.
  • 2Apostol T M. Arithmetical properties of generalizedRamanujan sums [J]. Pacific J Math, 1972, 41: 281.
  • 3Bourque K, Ligh S. Matrices associated with arith- metical functions[J]. Linear Multilinear Algebra, 1993, 34:261.
  • 4Hong S. Gcd-closed sets and determinants of matri- ces associated with arithmetical functions[J]. Acta Arith, 2002, 101:321.
  • 5Hong S, Li M, Wang B. Hyperdeterminants asso- ciated with multiple even functions [J]. Ramanujan J, 2014, 34(2): 265.
  • 6Hong S. Divisibility of determinants of least com- mon multiple matrices on gcd-closed sets [J]. Southeast Asian Bull Math, 2003, 27:675.
  • 7Hu S, Hong S. Multiple divisor chains and determi- nants of matrices associated with completerly even functions (mod r) [J] . Linear Multilinear Algebra, doi: 10. 1080/03081087. 2013. 818993.
  • 8Tan Q. Notes on the non-divisibility of power GCD and power LCM matrices [J]. Southeast Asian Bull Math, 2009, 33:561.
  • 9Tan Q. Divisibility properties of determinants of power GCD matrices and power LCM matrices on two coprime divisor chains [J]. J Siehuan Univ: Nat Sci Ed, 2009,46(6):1581(in Chinese).
  • 10Bourque K, Ligh S. Matrices associated with clas- ses of multiplicative functions [J]. Linear Algebra Appl, 1995, 216: 267.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部