期刊文献+

基于分位点回归和影响因子的动态保证金率 被引量:3

Dynamic margin rate based on quantile regression and impact factors
原文传递
导出
摘要 保证金是金融市场上对交易各方履约的基本保证.为了能够在风险可控的范围内设定更为合理的保证金水平,本文结合VaR方法中的GARCH、TGARCH、EGARCH模型,加入影响因子和基于MCMC的分位点回归方法来拟合模型参数,并利用Cornish-Fisher展开式估计分位数Φ-1q,以找到制定保证金水平更为合理的方法,然后采用沪胶指数日线为数据进行了对比和验证. Abstract.. Margin is a basic guarantee for the performance of the parties to the transaction on the futures market. To set more reasonable margin levels in the range of risk control, we combine GARCH, TGARCH, EGARCH model in VaR approach, together with impact factors and estimating model pa-rameters based on MCMC quantile regression method, evaluate the quantile φq-1 by using Cornish-Fisher expansion,and use daily data of Hujiao index, strive to develop a more rational approach through com- parison and verification.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期461-466,共6页 Journal of Sichuan University(Natural Science Edition)
关键词 动态保证金率 GARCH-VAR 影响因子 分位点回归 MH抽样 Dynamic margin rate GARCH-VaR Impact factors Quantile regression
  • 相关文献

参考文献7

二级参考文献65

共引文献17

同被引文献27

  • 1Engle R. Autoregressive conditional heteroscedasticmodels with estimates of the variance of Unite King-dom inflation[J]. Econometrica, 1982,50 : 987.
  • 2Bollerslev T. Generalized autoregressive conditionalheteroscedasticity [ J ],Journal of Econometrics?1986,31: 307.
  • 3Glosten L, Jagannathan R,Runkle, D. On the rela-tion between expected value and the volatility of thenominal excess returns on stocks[J],Journal of Fi-nance, 1993, 48.
  • 4Koenker R,Basset G Jr. Regression quantiles [J].Econometrica,1978, 46,33.
  • 5Taylor J W, Quantile regression approach to estima-ting the distribution of multi-period returns [J].Journal of Derivatives, 1999,7: 64.
  • 6Chernozhukov V. Umantsev L. Conditional value-at-risk: aspects of modeling and estimation[J]. Em-pirical Economics, 2001, 26(1) : 271.
  • 7Engle R,Manganelli S. CAViaR: Conditional au-toregressive value at risk by regression quantils[J].Journal of Business Economic Statistics ? 2004,22(4): 367.
  • 8Lee S Y,Noh J S. Quantile regression estimator forGARCH models[J]. Scandinavian Journal of statis-tics, 2013,40(1): 2.
  • 9Cai Y Z,Stander J,Davies N. A new Bayesian ap-proach to quantile autoregressive time Series modelestimation and forecasting[J]. Journal of Time Se-ries Analysis, 2012,33: 684.
  • 10Yu K,Moyeed R A. Bayesian quantile regression[J]. Statistical and Probability Letters, 2001,54: 437.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部