期刊文献+

β-FeSi_2(n)/c-Si(p)HIT型太阳能电池的模拟与优化 被引量:4

Simulation and optimization of β-FeSi_2(n)/c-Si(p) solar cell with intrinsic thin-layer
下载PDF
导出
摘要 运用afors-het软件对β-FeSi2(n)/a-Si(i)/c-Si(p)结构的太阳能电池进行模拟,依次讨论了本征层、发射层、界面态对电池性能的影响。结果表明:添加本征层电池性能提高,但随着本征层厚度的增加载流子收集率下降、串联电阻增大,造成电池光电转化效率下降;发射层厚度的增加使得载流子的收集率下降造成光电转化效率下降,同时发射层掺杂浓度增大虽然使得内建电场强度增大,但载流子的复合也会加大,最终使得电池性能保持稳定;界面态使得电池性能下降,为使电池获得较好性能,界面态密度应尽可能小于1011 cm–2·e V–1。通过优化,最终使得该结构的太阳能电池光电转化效率达到17.00%。 The performance of β-FeSi2(n)/c-Si(p) HIT solar cell was simulated by using the afors-het. At the same time, the influences of the intrinsic layer, an emission layer, and the interface states on the battery performance were discussed. The results show that, the performance of battery is improved after adding the intrinsic layer. However, with the increasing of the intrinsic layer thickness, carrier collection rate decreases and the series resistance increases so that the photoelectric conversion efficiency of cell decreases. Increasing the thickness of the emission layer makes the collection rate of carrier decrease, causing that the photoelectric conversion efficiency reduces. Although the increasing of emission layer doping concentration leads to increasing of built-in electric field intensity, the carrier compound increases simultaneously. So the battery performance remains stable. Interface states degrade battery performance, so the density of interface states should be less than 1011cm–2·eV–1 in order to obtain the better performance for the cell. By optimizing the various parameters of the cell, the photoelectricconversion efficiency of β-FeSi2(n)/a-Si(i)/c-Si(p) solar cell can reach 17.00%.
出处 《电子元件与材料》 CAS CSCD 2015年第6期23-27,共5页 Electronic Components And Materials
关键词 Β-FESI2 环保型材料 HIT型太阳能电池 本征层 界面态密度 afors-het β-FeSi2 environment-friendly materials HIT type solar cell intrinsic layer interface states density afors-het
  • 相关文献

参考文献14

二级参考文献125

  • 1郝会颖,孔光临,曾湘波,许颖,刁宏伟,廖显伯.非晶微晶两相硅薄膜电池的计算机模拟[J].物理学报,2005,54(7):3370-3374. 被引量:5
  • 2卢景霄,张宇翔,王海燕,靳锐敏,张丽伟,陈永生,郜小勇,杨仕娥.硅太阳电池稳步走向薄膜化[J].太阳能学报,2006,27(5):444-450. 被引量:16
  • 3Darakchieva V, Baleva M, Surtchev M. Structural and Optical Analysis of β-FeSi2 Thin Layers Prepared by Ion-beam Synthesis and Solid-state Reaction [ J ]. Physical Review B, 2000, 62 ( 19 ) : 13057-13063.
  • 4McKinty C N, Kirkby K J, Homewood K P, et al. The Properties of β-FeSi2 Fabricated by Ion Beam Assisted Deposition as a Function of Annealing Conditions for Use in Solar Cell Applications[ J]. Nuclear Instruments and Methods in Physics Research B, 2002, 188:179-182.
  • 5Liu Z X, Masato O, Teruhisa O, et al. Effect of a Fe3Si Buffer Layer for The Growth of Semicondueting β-FeSi2 Thin Film on Stainless Steel Substrate [ J ]. Journal of Crystal Growth, 2007, 307 : 82-86.
  • 6Liu Z X, Wang S N, Naotaka O, et al. A Novel β-FeSi2 Thin Film Solar Cell Fabricated by Sputtering [ A ]. 3rd World Conference on Phorovolroie Energy Conversion[ C]. Osakn, Japan, 2003-5.
  • 7Mahmoud S, Keita N, Kazuhiro N, et al. Low-temperature Annealing of n-type β-FeSi2/p-type Si Hererojunctions [ J ]. Japanese Journal of Applied Physics, 2008, 47 : 3444-3446.
  • 8Jagannathan B, Anderson W A 1996 Sol. Energy Mater. Sol. Cells 44 165.
  • 9Tardon S, Rosch M, Bruggemann R, Unold T, Bauer G H 2004 J. Non-Cryst. Solids 338--340 444.
  • 10Jagannathan B, Anderson W A, Coleman J 1997 Sol. Energy Mater. Sol. Cells 46 289.

共引文献46

同被引文献43

  • 1崔冬萌,贾锐,丁武昌,张烨,A.W.Weeber,宋世庚.梯度掺杂对n型异质结太阳能电池性能的影响[J].发光学报,2013,34(11):1505-1510. 被引量:2
  • 2薛俊明,麦耀华,赵颖,张德坤,韩建超,侯国付,朱锋,张晓丹,耿新华.薄膜非晶硅/微晶硅叠层太阳电池的研究[J].太阳能学报,2005,26(2):166-169. 被引量:22
  • 3RAHMAN M Z. Advances in surface passivation and emitter optimization techniques of c-Si solar cells[J]. Renew Sust Energy Rev, 2014, 30: 734-742.
  • 4CUEVAS A, MACDONALD D. Measuring and interpreting the lifetime of silicon wafers[J]. Sol Energy, 2004, 76(1): 255-262.
  • 5COTTER J E, GUO J H, COUSINS P J, et al. P-type versus n-type silicon wafers: prospects for high-efficiency commercial silicon solar cells[J]. Electron Dev, 2006, 53(8): 1893-1901.
  • 6BOTHE K, SINTON R, SCHMIDT J. Fundamental boron-oxygen-related cartier lifetime limit in mono-and multicrystalline silicon [J]. Prog Photovolt: Res Appl, 2005, 13: 287-296.
  • 7MACDONALDA D, GEERLIGS L. Recombination activity of interstitial iron and other transition metal point defects in p-and n-type crstalline silicon [J]. Appl Phys Lett, 2004, 85:4061-4063.
  • 8WENHAM S R GREEN M A, WATT M E, et al. Applied photovoltaics [M]. London: Routledge, 2012: 58-63.
  • 9GREEN M A. "High-efficiency silicon solar cell concepts" in solar cells (second edition): materials, manufacture and operation [M]. Amsterdam: Holland Elsevier Science. 2013: 87-113.
  • 10LUQUE A, HEGEDUS S. "'The physics of solar cell" in handbook of photovoltaic science and engineering [M]. New York: John Wiley & Sons Ltd, 2005:61-112.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部