期刊文献+

红外焦平面探测器中间层杨氏模量提取研究

Young's modulus calculation of the interlayer in infrared focal plane array detector
下载PDF
导出
摘要 为系统研究热冲击下InSb焦平面探测器的形变规律,需借助多层材料形变分析方程组求得其形变解析解。本文在分析、模拟双组份弹性材料均匀混合后其等效杨氏模量随体积分数变化趋势的基础上,借助有限元软件ANSYS对InSb焦平面探测器中间层等效杨氏模量的提取进行系统研究。分析结果表明,直接采用线弹性材料模型模拟的结果与真实材料的等效杨氏模量相去甚远,需用黏塑性模型方能给出符合实际的中间层等效杨氏模量;在InSb焦平面探测器典型结构设计中,中间层的等效杨氏模量随体积分数的演化规律可用线性方程描述,这为后续探测器结构优化提供了理论分析模型支撑。 In order to explore the deformation rules of InSb infrared focal plane array detector under the thermal shock, We need solve the equation set describing the deformation of a multi-layer material system. In the equation set, the equivalent Young’s modulus of the interlayer in the InSb infrared focal plane array detector is unknown. So in this paper, We firstly analyze the changing tendency of the equivalent Young's modulus of the interlayer mixed uniformly by two elastic materials, which is determined by the material volume fraction. Secondly, employing the finite element method, we calculate the equivalent young's modulus of the interlayer in InSb infrared focal plane array detector. Analysis results show that the equivalent young's modulus calculated directly by two linear elastic material models is larger than its real value, and the viscoplacticity model, describing the stress-strain character of the indium bump array, should be employed to acquire its real value. Finally, we draw a conclusion that in the interlayer of the InSb infrared focal plane array detector, the relationship between its equivalent young's modulus and the indium volume fraction can be described with a linear equation. This finding provides a theoretical analysis model to optimize the structure of InSb infrared focal plane array detector in the following study.
出处 《电子元件与材料》 CAS CSCD 2015年第6期70-73,77,共5页 Electronic Components And Materials
基金 国家自然科学基金青年科学基金资助项目(N0.61107083 N0.61205090)
关键词 焦平面探测器 杨氏模量 体积分数 结构优化 多层材料 ANSYS focal plane detector Young's modulus volume fraction structure optimization multi-layer material ANSYS
  • 相关文献

参考文献12

  • 1TIDROW M Z. New infrared sensors for ballistic missile defense [C]// Proc SPIE Vol 5732, California, USA : SPIE, 2005: 217-224.
  • 2RIZK C G~ POULIQUEN P O, ANDREOU A G Flexible readout and integration sensor (FRIS): new class of imaging sensor arrays optimized for air and missile defense [J]. Johns Hopkins Apl Teehn Digest, 2010, 28(3): 252-253.
  • 3TSAO T, WEN Z Q. Image-based target tracking through rapid sensor orientation change [J]. Opt Eng, 2002, 41(3): 697-703.
  • 4龚海梅,刘大福.航天红外探测器的发展现状与进展[J].红外与激光工程,2008,37(1):18-24. 被引量:47
  • 5HUANG Q P, XU G W, YUAN Y, et al. Development of indium bumping technology through AZ9260 resist electroplating [J]. J Micromeeh Microeng, 2010, 20(5): 306-319.
  • 6FINGER G, DORN R J, MEYER M, et al. Hybrid active pixel sensors in infrared astronomy [J]. Nucl lnstrum Methods Phys Res Sect A, 2005, 549(1): 79-86.
  • 7OLSEN G H, ETTENBERG M. High-performance GaAs [J]. Appl Phys, 1977, 48: 2543.
  • 8HSUEH C I-I. Thermal stresses in elastic multilayer systems [J]. Thin _ Sol!d Films, 2OO2, 418(2): 182-188.
  • 9雷友锋,魏德明,高德平.细观力学有限元法预测复合材料宏观有效弹性模量[J].燃气涡轮试验与研究,2003,16(3):11-15. 被引量:36
  • 10孟庆端,吕衍秋,鲁正雄,孙维国.InSb红外焦平面探测器结构应力的ANSYS分析[J].红外与毫米波学报,2010,29(6):431-434. 被引量:21

二级参考文献27

  • 1冯雪艳.红外遥感技术的军事应用[J].国防技术基础,2006(5):28-30. 被引量:3
  • 2美国天基预警系统[J].卫星侦察参考资料,1996(3):28-37. 被引量:1
  • 3[1]Eshelby J D. The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problem [C]. London: Proceedings of the Royal Society Series A, 1957.
  • 4[2]Hill R. A Self-consistent Mechanics of Composite Materials [J]. J Mech Phys Solids, 1965,13:213-222.
  • 5[3]Mori T, Tanaka K. Average Stress in Matrix and Average Enengy of Materials with Misfitting Inclusions[J]. Acta Metall,1973,21:571-574.
  • 6[4]Caruso J J. Application of Finite Element Substructuring to Composites Micromechanics [R]. NASA TM-83729, 1984.
  • 7[5]Brockenbrough J R, Suresh S, Wienecke H A. Deformation of MMCs with Continuous Fibers: Geometrical Effects of Fiber Distribution and Shape [J]. Acta Metall Mater, 1991, 39: 735-752.
  • 8[6]Zhang W C, Evans K E. Numerical Prediction of Mechanical Properties of Anisotropic Composite Materials [J]. Computers and Structures, 1988,29(3):413-422.
  • 9[7]Fang Daining, Liu Tieqi . On the effect of Fiber Shape and Packing Array on Elastic Properties of Fiber-Polymer-Matrix Composites [J]. Inter J Polymeric Mater, 1996,34(1): 75-90.
  • 10[8]Nakamura T, Suresh S. Effects of thermal residual stresses and fiber packing on deformation of metal matrix composites [J]. Acta Metall. Mater., 1993, 41(6):1665-1681.

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部