期刊文献+

金属铝板弯折形变积累的超声兰姆波无损检测

Non-destructive detection for bending deformation of aluminum beams using ultrasonic Lamb waves
下载PDF
导出
摘要 材料结构中疲劳微裂纹的产生和扩展是影响其寿命的重要因素,在疲劳裂纹产生初期就将其检测出来对于提高结构安全性至关重要。利用兰姆波探索了铝板反复弯折时判定材料疲劳积累到最终塑性形变断裂失效的方法。试验通过分析兰姆波各模式的频散曲线、振幅曲线和对比理论与实际的波包群速度,选定了在最佳激励频率下判定疲劳损伤积累的特征信号。还通过快速傅里叶变换分析频域的能量分布来判定疲劳累积。试验结果表明:在试样从弯折塑性形变积累到出现微裂纹的过程中,A0波包振幅有小幅度的减小,而在材料断裂失效前,该振幅幅度会急剧减小。 The formation and growth of fatigue cracks in structural materials is a crucial factor affecting their service life. Thus, it is important to detect the formation of the fatigue crack at the beginning and monitor its growth. Through the bending deformation simulation experiment, an approach by using Lamb wave was developed to detect the process from the accumulation of fatigue damages to the fracture of materials. By analyzing the dispersion curves and particle motion amplitudes of Lamb waves and comparing the theoretical and the actual group velocities, the characteristic mode packets under the optimum excitation frequency can be distinguished to evaluate the accumulation of the fatigues. And fast Fourier transform was used to reveal the energy distribution in frequency domain to detect damage accumulation. It is found that during the bending process from the fatigue accumulation to the appearance of micro-crack, the amplitude of A0 wave packet decreases. Especially, before the failure of materials, the amplitude decreases significantly.
出处 《电子元件与材料》 CAS CSCD 2015年第6期78-81,共4页 Electronic Components And Materials
基金 国家自然科学基金资助(No.51372034 No.11329402 No.51172036) 广东省创新团队计划资助(No.201001D0104713329)
关键词 兰姆波 频散曲线 振幅曲线 傅里叶变换 疲劳损伤 超声 Lamb waves dispersion curves amplitude curve Fourier transform fatigue damage ultrasonic
  • 相关文献

参考文献10

  • 1张屹林,闫汝辉,朱利民.汽车工业中的铝合金[J].山东内燃机,2004(3):26-31. 被引量:19
  • 2杨守杰,戴圣龙.航空铝合金的发展回顾与展望[J].材料导报,2005,19(2):76-80. 被引量:205
  • 3PAUL S K, RAY A. Influence of inclusion characteristics on the formability and toughness properties of a hot-rolled deep-drawing quality steel [J]. J Mater Eng perform, 1997, 6(1): 27-34.
  • 4MANNOT J, HER1TIER 13, COGNE J Y. Relationship of melting practice, inclusion type, and size with fatigue resistance of bearing steels [J]. ASTM Spec Tech Publ, 1988, 9(8): 149-165.
  • 5周正干,刘斯明.铝合金初期塑性变形与疲劳损伤的非线性超声无损评价方法[J].机械工程学报,2011,47(8):41-46. 被引量:24
  • 6YU L. In-situ structural health monitoring with piezoelectric wafer active sensor guided-wave phased arrays [D]. Columbia: University of South Carolina, 2006.
  • 7WORLTON D. Ultrasonic testing with Lamb waves [R]. gichland, Washington: General Electric Co., Hanford Atomic Products Operation, 1956.
  • 8GUO D, KUNDU T. A new transducer holder mechanism for pipe inspection [J]. J Acoust Soc Am, 2001, 110(1): 303-309.
  • 9LIN B. Power and energy transduction in piezoelectric wafer active sensors for structural health monitoring modeling and applications [D]. Colombia: University of South Carolina, 2010.
  • 10LAMB H. On waves in an elastic plate [J]. Proc R Soc A: Math, Phys Eng Sci, 1917, 93(648): 114-128.

二级参考文献39

  • 1FROUIN J, SATHISH S, MATIKAS T E, et al. Ultrasonic linear and nonlinear behavior of fatigued Ti-6Al-4V[J]. Journal of Materials Research, 1999, 14(4): 1295-1298.
  • 2CROXFORD A J, WILCOX P D, DRINKWATER B W, et al. The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue[J]. The Journal of the Acoustical Society of America, 2009, 126(5): EL117-EL123.
  • 3YAN D W, DRINKWATER B W, NEILD S A. Measurement of the ultrasonic nonlinearity of kissing bonds in adhesive joints[J]. N DT& E International, 2009, 42(7): 459-466.
  • 4NAGY P B. Fatigue damage assessment by nonlinear ultrasonic materials characterization[J]. Ultrasonics, 1998, 36: 375-381.
  • 5CANTRELL J H, YOST W T. Nonlinear ultrasonic characterization of fatigue microstructures[J]. International Journal of Fatigue, 2001, 23: 487-490.
  • 6CANTRELL J H, YOST W T. Acoustic harmonic generation from fatigue-introduced dislocation dipoles[J]. Philosophical Magazine A, 1994, 69(2): 315-326.
  • 7CANTRELL J H. Ultrasonic harmonic generation from fatigue-induced dislocation substructures in planar slip metals and assessment of remaining fatigue life[J]. Journal of Applied Physics, 2009, 106(9) : 093516.1-093516.6.
  • 8KUMAR A, TORBET C J, JONES J W, ct al. Nonlinear ultrasonics for in situ damage detection during high frequency fatigue[J]. Journal of Applied Physics, 2009, 106(2): 024904.1-024904.9.
  • 9KIM J, JACOBS L, QU J. Experimental characterization of fatigue damage in nickel-base super alloy using nonlinear ultrasonic waves[J]. The Journal of the Acoustical Society of America, 2006, 120(3): 1266-1273.
  • 10RAO V, KANNAN E, PRAKASH R V, et al. Observation of two stage dislocation dynamics from nonlinear ultrasonic response during the plastic deformation of AA7175-T7351 aluminum alloy[J]. Materials Science and Engineering: A, 2009, 512(1-2): 92-99.

共引文献245

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部