期刊文献+

与拉回度量相关泛函的f-稳态映射的刘维尔型定理(英文) 被引量:1

LIOUVILLE TYPE THEOREMS OF f-STATIONARY MAPS OF A FUNCTIONAL RELATED TO PULLBACK METRICS
下载PDF
导出
摘要 本文研究了与拉回度量相关的广义泛函Φf.利用f-应力能力张量的方法,得到f-稳态映射的单调公式,消灭定理以及常Dirichlet边值问题在星型区域上的唯一常值解. In this paper, we investigate a generalized functional Of related to the pullback metric. By using the method of f-stress energy tensor, we obtain the monotonicity formulas, vanishing theorems and the unique constant solution of the constant Dirichlet boundary value problem on some starlike domain for f-stationary maps.
出处 《数学杂志》 CSCD 北大核心 2015年第3期486-498,共13页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(10971029 11201400 11026062) Project of Henan Provincial Department of Education(2011A110015) Talent Youth Teacher Fund of Xinyang Normal University
关键词 f-稳态映射 f-应力能量张量 单调公式 消灭定理 f-stationary map f-stress-energy tensor monotonicity formula vanishing the-orems
  • 相关文献

参考文献16

  • 1Kawai S, Nakauchi N. Some result for stationary maps of a functional related to pullback metrics[J]. Nonlinear Analysis, 2011, 74(6): 2284-2295.
  • 2Nakauchi N, A variational problem related to conformal maps[J]. Osaka J. Math., 2011, 48(3): 719-741.
  • 3Nakauchi N, Takenaka Y. A variational problem for pullback metrics[J]. Ricerche Math., 2011, 60(2): 219-235.
  • 4Asserda S. Liouville-type results for stationary maps of a class of functional related to pullback metrics[J]. Nonlinear Analysis, 2012, 75(8): 3480-3492.
  • 5Lichnerowicz A. Apllications harmoniques et varietes kiihleriennes[J]. Symposia Mathematica III, London: Academic Press, 1970: 341-402.
  • 6Eells J, Lemaire L. A report on harmonic maps[J]. Bull. Lond. Math. Soc., 1978, 10(1): 1-68.
  • 7Course A. f-harmonic maps[D]. UK: University of Warwick, 2004.
  • 8Ouakkas S, Nasri R, Djaa M. On the f-hamronic and f-biharmonic maps[J]. JP J. Geom. Topol., 2010, 10(1): 11-27.
  • 9Ou Y L. On f-harmonic morphisms between Riemannian manifolds[J]. arXiv:1103.5687v1[math. DG] 29 Mar. 2011.
  • 10Ara M. Geometry of F-harmonic maps[J]. Kodai Math. J., 1999,22(2): 243-263.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部