期刊文献+

Guo族非线性可积耦合的哈密顿结构及其守恒(英文) 被引量:1

CONSERVATION LAWS AND HAMILTONIAN STRUCTURE FOR A NONLINEAR INTEGRABLE COUPLINGS OF GUO SOLITON HIERARCHY
下载PDF
导出
摘要 基于可积耦合的基本理论,我们给出了构造孤子族非线性可积耦合的一般方法,并用相应圈代数上的变分恒等式来求可积耦合的哈密顿结构.作为应用,我们给出了Guo族的非线性可积耦合及其哈密顿结构.最后,给出了Guo族非线性可积耦合的守恒律. In this paper, based on the rudimentary knowledge of the nonlinear integrable couplings, we establish a scheme for constructing nonlinear integrable Hamiltonian couplings of soliton hierarchy. Variational identities over the corresponding loop algebras are used to offer Hamiltonian structures for the resulting integrable couplings. As an application, we use this method to obtain a nonlinear integrable couplings and Hamiltonian structure of the Guo hierarchy. Finally, we present the conservation laws for the nonlinear integrable couplings of the Guo soliton hierarchy.
出处 《数学杂志》 CSCD 北大核心 2015年第3期539-548,共10页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(11271008 61072147) the Shanghai Leading Academic Discipline Project(J50101) the Shanghai Univ.Leading Academic Discipline Project(A.13-0101-12-004) the Science and Technology Department of Henan Province(142300410253 142300410324)
关键词 零曲律方程 可积耦合 哈密顿结构 守恒律 zero curvature equations integrable couplings Hamiltonian structure conservation laws
  • 相关文献

参考文献2

二级参考文献19

  • 1L. Luo and E.G. Fan, Commun. Theor. Phys. 49 (2008) 1399.
  • 2T.C. Xia, Commun. Theor. Phys. 53 (2010) 25.
  • 3J.Y. Ge and T.C. Xia, Commun. Theor. Phys. 54 (2010) 1.
  • 4G.Z. Tu, J. Math. Phys. 30 (1989) 330.
  • 5E.G. Fan, J. Math. Phys. 41 (2000) 7769.
  • 6E.G. Fan, J. Phys. A 34 (2001) 513.
  • 7T.C. Xia and E.G. Fan, J. Math. Phys. 46 (2005) 0435101.
  • 8T.C. Xia, F.C. You, and D.Y. Chen, Chaos, Solitons and Fractals 27 (2006) 153.
  • 9T.C. Xia, F.C. You, and D.Y. Chen, Chaos, Solitons and Fractals 23 (2005) 1911.
  • 10T.C. Xia and F.C. You, Chaos, Solitons and Fractals 28 (2006) 938.

共引文献4

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部