期刊文献+

间隔序列与拟对称映射 被引量:1

GAP SEQUENCE AND QUASISYMMETRIC MAPPING
下载PDF
导出
摘要 本文研究了欧式空间上拟对称映射的不变量问题,利用定义集合间隔序列的方法,获得了一个新的d-维拟对称映射的不变量,深化了Lipschitz不变量研究中类似的结果. In this paper we study the problem of invariants of quasisymmetric mappings on the Euclidean spaces. By making use of the definition of gap sequence of sets, we obtain a new invariant of d-dimensional quasisymmetric mapping. This result is a complement of a similar result on the study of Lipschitz invariants.
作者 娄曼丽
出处 《数学杂志》 CSCD 北大核心 2015年第3期705-708,共4页 Journal of Mathematics
基金 国家自然科学基金资助(11301092) 高等学校博士学科点专项科研基金资助(20100172120027)
关键词 分形 间隔序列 拟对称映射 fractals gap sequence quasisymmetric mapping
  • 相关文献

参考文献10

  • 1Tukia P, ViiisiiUi J. Quasisymmetric embeddings of metric spaces[J]. Ann. Acad. Sci. Fenn. Ser. A I Math., 1980, 5(1): 97-114.
  • 2Heinonen J. Lectures on analysis on metric spaces[M]. Universitext, New York: Springer-Verlag, 2001.
  • 3Bishop C J. Quasiconformal mappings which increase dimension[J]. Ann. Acad. Sci. Fenn. Math., 1999, 24(2): 397-407.
  • 4Tyson J T. Sets of minimal Hausdorff dimension for quasiconformal maps[J]. Proc. Amer. Math. Soc., 2000, 128(11): 3361-3367.
  • 5Kovalev L V. Conformal dimension does not assume values between zero and one[J]. Duke Math. J, 2006, 134(1): 1-13.
  • 6Gehring F W. The £P-integrability of the partial derivatives of a quasiconformal mapping[J]. Acta Math., 1973, 130: 265-277.
  • 7Gehring F W, Vaisala J. Hausdorff dimension and quasiconformal mappings[J]. J. London Math. Soc. (2), 1973, 6: 504-512.
  • 8Tukia P. Hausdorff dimension and quasisymmetric mappings[J]. Math. Scand., 1989,65(1): 152-160.
  • 9Besicovitch A S and Taylor S J. On the complementary intervals of a linear closed set of zero Lebesgue measure[J]. J. London Math. Soc., 1954, 29: 449-459.
  • 10Rao H, Ruan H J, Yang Y M. Gap sequence, Lipschitz equivalence and box dimension of fractal sets[J]. Nonlinearity, 2008, 21(6): 1339-1347.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部