期刊文献+

Banach空间中演化算子的非一致广义二分性

On nonuniform generalized dichotomy of evolution operators in Banach spaces
下载PDF
导出
摘要 给出了Banach空间中演化算子的一个更一般的概念——非一致广义二分性的必要条件和充分条件,从而将演化型算子指数二分性的相关经典结论推广到了非一致广义二分性的情形. The necessary condition and sufficient one for a general concept of dichotomy for evolution operators in Ba‐nach spaces are given .Some well‐known results for exponential dichotomy are extended to the nonuniform general‐ized dichotomy .
作者 岳田 雷国梁
出处 《江苏师范大学学报(自然科学版)》 CAS 2015年第2期32-34,共3页 Journal of Jiangsu Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(51374199) 中央高校基本科研业务费专项资金资助项目(2012LWB53)
关键词 演化算子 非一致广义二分性 增长率 指数二分性 evolution operator nonuniform generalized dichotomy growth rate exponential dichotomy
  • 相关文献

参考文献17

  • 1Sasu A L. Exponential dichotomy and dichotomy radi- us for difference equations [J]. J Math Anal Appl, 2008,344(2) :906.
  • 2Sasu B. Integral conditions for exponential dichotomy: a nonlinear approach[J]. Bull Sei Math, 2010,134 (3) : 235.
  • 3Megan M,Sasu A L,Sasu B. On nonuniform exponen- tial dichotomy of evolution operators in Banach spaces [J 1. Integr Equ Oper Theory, 2002,44 ( 1 ) : 71.
  • 4Huy N T. Exponential dichotomy of evolution equa- tions and admissibility of function spaces on a half-line [J]. J Funct Anal ,2006,235(1) .-330.
  • 5Lupa N,Megan M. Exponential dichotomies of evolu- tion operators in Banach spaces[J]. Monatsh Math,2014,174(2) : 265.
  • 6Yue T,Song X,Li D. On weak exponential expansive- ness of evolution families in Banach spaees[J/OL~. Sci- entific World J,2013(Art. ID 284630) :6pp. [2014-06- 101. http://www, nebi. nlm. nih. gov/pmc/artieles/ PMC3745963.
  • 7Yue T,Song X, Li D. On weak exponential expansive- ness of skew-evolution semiflows in Banach spaces[J/ OLd. J Inequal Appl,2014(Art. ID 165): llpp. [2014- 06-10 -1. http://www, journalofinequalitiesandappli- cations, com/content/2014/1/165.
  • 8Song X,Yue T,Li D. Nonuniform exponential trichot- omy for linear discrete-time systems in Banach spaces VJ/OL~. J Func Space Appl, 2013(Art. ID 645250): 6pp. [2014-06-101. http://dx, doi. org/10. 1155/2013/ 645250.
  • 9Perron O. Die stabilitatsfrage bei differential gleichun- gen[J]. Math Z,1930,32(1) :703.
  • 10Daleckij J L,Krein M G. Stability of solutions of dif- ferential equations in Banach spaces[M]. Providence: Trans Am Math Soc, 1974.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部