期刊文献+

非可微多目标分式规划问题的逆对偶研究

Converse duality for non-differentiable multi-objective fractional programming
下载PDF
导出
摘要 研究了一类带有支撑函数的非可微的多目标分式规划问题,对其建立了对偶模型.利用Fritz-John型必要条件,在没有约束品性条件下给出了对偶问题的逆对偶定理. A class of non‐differentiable multi‐objective fractional programming problems with support functions are considered .And then ,dual model for the corresponding problem is formulated ,and converse duality theorems by u‐sing Fritz‐John type necessary condition are discussed ,without any constraint qualifications .
作者 卢厚佐
出处 《江苏师范大学学报(自然科学版)》 CAS 2015年第2期43-46,共4页 Journal of Jiangsu Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11201511 11201379) 重庆市重点实验室专项基金资助项目(CSTC 2011KLORSE03)
关键词 非可微多目标分式规划 广义凸函数 逆对偶定理 non-differentiable multi-objective fractional programming generalized convex function converse duality theorem
  • 相关文献

参考文献14

  • 1Gulati T R,Geeta. Duality in nondifferentiable muhiobjeetive fractional programming problem with generalized invexity FJ]. J Appl Math Comput,2011,35(1/2) :103.
  • 2Liang Zhian, Huang Hongxuan, Pardalos P M, Efficiency conditions and duality for a class of multiobjective fractional pro- gramming problems[J]. J Global Optim,2003,27(4):447.
  • 3Liu Sanming, Feng Enmin. Optimality conditions and duality for a class of multiobjective fractional programming problems [J]. J Global Optim,2007,38(10) : 653.
  • 4Long Xianjun. Optimality conditions and duality for nondifferentiable multiobjective fractional programming problems with (C,ce,p,d)[J]. J Optim Theory Appl,2011,148 : (8) : 197.
  • 5Gomez R O,Lizana A R,Canales P R. Multiobjective fractional programming with generalized convexity[J]. Top, 2000,8 (1):97.
  • 6Mond B. A class of non-differentiable fractional prgramming problems[J]. J Appl Math Mech, 1978,58 (4) :337.
  • 7Zalmai G J. Generalized (r/,p)-invex functions and global semiparametric sufficient conditions for multiobjective fractional programming problems containing arbitrary norms[J]. J Global Optim, 2006,36(2):51.
  • 8Mangasarian O L. Nonlinear programming[M]. New York : McGraw Hill, 1969.
  • 9Lee G M, Kim D S. Converse duality in fractional programming[J]. Appl Math Lett, 1993,6 (4) :39.
  • 10Yang xinming,Teo K L. A converse duality theorem on higher-order dualmodels in nondifferentiable mathematical pro- gramming[J]. Optim Lett,2012,6(5) : 11.

二级参考文献18

  • 1Weir T, Mond B. Preinvex functions in Multi-objective Optimization [J]. Journal of Mathe- matical Analysis and Applications, 1988, 136: 29-38.
  • 2Pini R. Invexity and generalized convexity [J]. Optimization, 1991, 22- 513-525.
  • 3Ansari Q H, Schaible S, Yao J C. η- Pseudilinearity [J]. Riviste di Matematice per le Scienze Economiche e Sociali, 1999, 22: 31-39.
  • 4Mohan S R, Neogy S K. On invex sets and preinvex functions [J]. Journal of Mathematical Analysis and Applications, 1995, 189: 901-908.
  • 5Dinh N, Jeyakumar V, Lee G M. Lagrange multiplier characterizations of solution sets of constrained pseudolinear optimization problems [J]. Optimization, 2006, 55: 241-250.
  • 6Lalitha C S, Mehta M. A note on pseudolinrarity in terms of bifunctions [J]. Asia-Pacific Journal of Operational Research, 2007, 24: 83-91.
  • 7Ansari Q H, Rezaei M. Generalized pseudolinearity [J]. Optimization Letters, 2010, Doi 10.1007/s11590-010-0238-2.
  • 8Zhao K Q, Tang L P. On characterizing solution set of non-differentiable η-pseudolinear extremum problem [J]. Optimization, 2011, Doi 10.1080/02331934.2010.505653.
  • 9Geoffrion A M. Proper efficiency and the theory of vector maximization [J]. Journal of Math- ematical Analysis and Applications, 1968, 22: 618-630.
  • 10Yang X M, Yang X Q, Teo K L. Criteria for generalized invex monotonicities [J]. European Journal of Operational Research, 2005, 164: 115-119.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部