期刊文献+

Explicit Estimates for Solutions of Nonlinear Radiation-type Problems

Explicit Estimates for Solutions of Nonlinear Radiation-type Problems
原文传递
导出
摘要 We establish the existence of weak solutions of a nonlinear radiation-type boundary value problem for elliptic equation on divergence form with discontinuous leading coefficient. Quantitative estimates play a crucial role on the real applications. Our objective is the derivation of explicit expres- sions of the involved constants in the quantitative estimates, the so-called absolute or universal bounds. The dependence on the leading coefficient and on the size of the spatial domain is precise. This work shows that the expressions of those constants are not so elegant as we might expect. We establish the existence of weak solutions of a nonlinear radiation-type boundary value problem for elliptic equation on divergence form with discontinuous leading coefficient. Quantitative estimates play a crucial role on the real applications. Our objective is the derivation of explicit expres- sions of the involved constants in the quantitative estimates, the so-called absolute or universal bounds. The dependence on the leading coefficient and on the size of the spatial domain is precise. This work shows that the expressions of those constants are not so elegant as we might expect.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第7期1123-1140,共18页 数学学报(英文版)
关键词 Elliptic equation estimate REGULARITY radiation-type boundary condition Elliptic equation, estimate, regularity, radiation-type boundary condition
  • 相关文献

参考文献26

  • 1Bénilan, P., Boccardo, L., Gallou?t, T., et al.: An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa, Serie 4, 22(2), 241-273 (1995).
  • 2Bialecki, R., Nowak, A. J.: Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions. Appl. Math. Model, 5, 417-421 (1981).
  • 3Bonder, J. F., Saintier, N.: Estimates for the Sobolev trace constant with critical exponent and applications. Ann. Mat. Pura Appl., 187(4), 683-704 (2008).
  • 4Boulkhemair, A., Chakib, A.: On the uniform Poincaré inequality. Comm. Partial Differential Equations, 32(9), 1439-1447 (2007).
  • 5Cazenave, T.: An introduction to Semilinear Elliptic Equations, Editora do IM-UFRJ, Rio de Janeiro, 2006.
  • 6Consiglieri, L.: The Joule-Thomson effect on the thermoelectric conductors. Z. Angew. Math. Mech., 89(3), 218-236 (2009).
  • 7Consiglieri, L.: A limit model for thermoelectric equations. Ann. Univ. Ferrara, 57(2), 229-244 (2011).
  • 8Consiglieri, L.: Mathematical analysis of selected problems from fluid thermomechanics. The (p-q) Coupled Fluid-energy Systems, Lambert Academic Publishing, Saarbrücken, 2011.
  • 9Consiglieri, L.: On the posedness of thermoelectrochemical coupled systems. Eur. Phys. J. Plus, 128(5), Article 47 (2013).
  • 10Daners, D.: Robin boundary value problems on arbitrary domains. Trans. Amer. Math. Soc., 352(9), 4207-4236 (2000).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部