期刊文献+

The Equivariant Family Index Theorem in Odd Dimensions

The Equivariant Family Index Theorem in Odd Dimensions
原文传递
导出
摘要 In this paper, we prove a local odd dimensional equivariant family index theorem which generalizes Freed's odd dimensional index formula. Then we extend this theorem to the noncommuta- tive geometry framework. As a corollary, we get the odd family Lichnerowicz vanishing theorem and the odd family Atiyah-Hirzebruch vanishing theorem. In this paper, we prove a local odd dimensional equivariant family index theorem which generalizes Freed's odd dimensional index formula. Then we extend this theorem to the noncommuta- tive geometry framework. As a corollary, we get the odd family Lichnerowicz vanishing theorem and the odd family Atiyah-Hirzebruch vanishing theorem.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第7期1149-1162,共14页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant No.11271062) Program for New Century Excellent Talents in University(Grant No.13-0721)
关键词 Odd equivariant family index formula Chern-Connes character Atiyah-Hirzebruch vanishing theorem Odd equivariant family index formula, Chern-Connes character, Atiyah-Hirzebruch vanishing theorem
  • 相关文献

参考文献1

二级参考文献6

  • 1A. Connes,H. Moscovici.The local index formula in noncommutative geometry[J].Geometric and Functional Analysis.1995(2)
  • 2Arthur Jaffe,Andrzej Lesniewski,Konrad Osterwalder.QuantumK-theory[J].Communications in Mathematical Physics.1988(1)
  • 3Yu Yanlin.Local index theorem for Dirac operator[J].Acta Mathematica Sinica.1987(2)
  • 4Feng,H.A note on the noncommutative Chern character, Acta Math[].Sinica (in Chinese).2003
  • 5Freed,D.Two index theorems in odd dimensions, Commu.Anal[].Geomatica.1998
  • 6Yu,Y. L.Local index theorem for Dirac operator, Acta Math[].Sinica (New Series).1987

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部