期刊文献+

Invariance for Stochastic Differential Systems with Time-dependent Constraining Sets 被引量:2

Invariance for Stochastic Differential Systems with Time-dependent Constraining Sets
原文传递
导出
摘要 The first part of this article presents invarlance criteria Ior a sl;ocnasl;lC (lllier^n~x^l ~qu^luu whose state evolution is constrained by time-dependent security tubes. The key results of this section are derived by considering an equivalent problem where the square of distance function represents a viscosity solution to an adequately defined partial differential equation. The second part of the paper analyzes the broader context when solutions are constrained by more general time-dependent convex domains. The approach relies on forward stochastic variational inequalities with oblique reflection, the generalized subgradients acting as a reacting process that operates only when the solution reaches the boundary of the domain. The first part of this article presents invarlance criteria Ior a sl;ocnasl;lC (lllier^n~x^l ~qu^luu whose state evolution is constrained by time-dependent security tubes. The key results of this section are derived by considering an equivalent problem where the square of distance function represents a viscosity solution to an adequately defined partial differential equation. The second part of the paper analyzes the broader context when solutions are constrained by more general time-dependent convex domains. The approach relies on forward stochastic variational inequalities with oblique reflection, the generalized subgradients acting as a reacting process that operates only when the solution reaches the boundary of the domain.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第7期1171-1188,共18页 数学学报(英文版)
基金 Supported by the Grant PN-II-ID-PCE-2011-3-1038,2011(Grant No.208/05.10.2011)
关键词 Stochastic differential (in)equations INVARIANCE oblique reflection Stochastic differential (in)equations, invariance, oblique reflection
  • 相关文献

参考文献23

  • 1Asiminoaei, I., R??canu, A.: Approximation and simulation of stochastic variational inequalities—splitting up method. Numer. Funct. Anal. Optim., 18(3-4), 251-282 (1997).
  • 2Bernstein, D. S.: Matrix Mathematics. In: Theory, Facts, and Formulas, Princeton Univ. Press, Princeton, New Jersey, 2009.
  • 3Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
  • 4Buckdahn, R., Quincampoix, M., Rainer, C., et al.: Viability of moving sets for stochastic differential equation. Adv. Differential Equations, 7(9), 1045-1072 (2002).
  • 5Buckdahn, R., Quincampoix, M., R??canu, A.: Viability property for a backward stochastic differential equation and applications to partial differential equations. Probab. Theory Related Fields, 116(4), 485-504 (2000).
  • 6Cépa, E.: Problème de Skorohod multivoque, multivalued Skorohod problem (in French). Ann. Probab., 26(2), 500-532 (1998).
  • 7Colombo, G., Goncharov, V.: Variational inequalities and regularity properties of closed sets in Hilbert spaces. J. Convex Anal., 8(1), 197-221 (2001).
  • 8Constantini, C.: The Skorohod oblique reflection problem in domains with corners and application to stochastic differential equations. Probab. Theory Related Fields, 91, 43-70 (1992).
  • 9Crandall, M. G., Ishii, H., Lions, P. L.: User's Guide to Viscosity Solutions of Second Order Partial Differential Equations. Bull. Amer. Math. Soc., 27(1), 1-67 (1992).
  • 10Dupuis, P., Ishii, H.: SDEs with oblique reflection on nonsmooth domains. Ann. Probab., 21(1), 554-580 (1993).

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部