期刊文献+

On Two Classes of Finite Inseparable p-Groups 被引量:2

On Two Classes of Finite Inseparable p-Groups
原文传递
导出
摘要 A finite group is inseparable, it does not split over any proper nontrivial normal subgroup; that is, if it has no nontrivial semidirect product decompositions. This paper investigates two classes of finite inseparable p-groups and, for p ≥ 3, establishes a necessary and sufficient condition for insep- arability. A finite group is inseparable, it does not split over any proper nontrivial normal subgroup; that is, if it has no nontrivial semidirect product decompositions. This paper investigates two classes of finite inseparable p-groups and, for p ≥ 3, establishes a necessary and sufficient condition for insep- arability.
作者 Joseph KIRTL
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第7期1203-1214,共12页 数学学报(英文版)
关键词 P-GROUP inseparable SPLITTING p-group, inseparable, splitting
  • 相关文献

参考文献13

  • 1Bechtell, H.: Elementary groups. Trans. Amer. Math. Soc., 114, 355-362 (1965).
  • 2Bechtell, H.: Theory of Groups, Addison-Wesley, Reading, MA, 1971.
  • 3Bechtell, H.: Inseparable finite solvable groups. Trans. Amer. Math. Soc., 216, 47-60 (1976).
  • 4Bechtell, H.: Inseparable finite solvable groups, II. Proc. Amer. Math. Soc., 64, 25-29 (1977).
  • 5Bechtell, H.: Splitting systems for finite solvable groups. Arch. Math., 36, 295-301 (1981).
  • 6Bechtell, H.: On nonnilpotent inseparable groups of order pnqm. J. Algebra, 75, 223-232 (1982).
  • 7Huppert, B.: Endliche Gruppen I, Springer-Verlag, Berlin, 1983.
  • 8Kirtland, J.: Direct products of inseparable finite groups. Arch. Math., 62, 289-291 (1994).
  • 9Kirtland, J.: Finite solvable multiprimitive groups. Comm. Algebra, 23, 335-356 (1995).
  • 10Kirtland, J.: Direct products of inseparable finite groups, II. Comm. Algebra, 25, 243-246 (1997).

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部