期刊文献+

月面机器人探测路线图及典型方案研究 被引量:4

Research on the Roadmap and Typical Scenarios of Lunar Surface Robot Exploration
下载PDF
导出
摘要 月面机器人具有环境适应性好、工作时间长和安全性高等特点,是未来无人/载人月面探测中的重要支持系统。在分析整理国内外月面机器人探测历史与规划的基础上,梳理月面机器人探测任务需求。结合中国探月工程总体规划和技术水平,提出月球南极、中低纬度和月球背面月面机器人探测的路线图,并从科学价值、工程可行性等方面对各阶段着陆地点进行初选;详细阐述以水冰探测和生物学实验为主要目标的月球南极Shackleton山跨明暗界线探测方案,以及以人机联合探测、大深度地质钻探为特色的中低纬度海陆边界区探测的任务目标和系统方案,可为探月任务的实施提供参考和启示。 Compared to expensive manned lunar exploration,robot exploration can carry out more sorts of works safely and consistently,such as roving exploration,in-situ sampling,maintenance,and carrying heavy cargoes,et al.After analyzing foreign countries' histories and future plans of lunar surface robot exploration,three trends are summered up,and seven requirements are classified.Three phases of lunar South Pole exploration,middle-low latitude exploration and lunar far-side exploration are proposed based on our country 's lunar exploration overall planning and aero-space technique level,and landing sites are primarily selected from the views of scientific value and engineering feasibility.At last,requirements analyzing and scenarios designs of Shackleton mountain exploration and middle-low latitude exploration are detailed,which can be used to as proposals for our country's future lunar surface exploration.
出处 《载人航天》 CSCD 2015年第3期263-269,共7页 Manned Spaceflight
关键词 月面机器人探测 月球南极 路线图 月球背面 Shackleton撞击坑 lunar surface robot exploration lunar South Pole roadmap lunar far-side Shackleton crater
  • 相关文献

参考文献18

  • 1Hua H, Mrozinski J, .Sheh.n K, e~ ~ll. AHalyzh~g hm~r mi.~- si.n architectures using an aeli'Jly planner fiw ~ptimizing hlnar surface human-robc~t operati.ns I C]//Con[~renee ~m System Engineez'ing Reseats,h. Los Angeles. CA. 2008.
  • 2Lawrence C. Greet, Michael J. Krasowski, NM'man F. Prokop. Cratos: the" evolution of a robotic vehicle [ R ]. NASA/TM-2013-216491, 2013.
  • 3Chain J, Bailey S, Clark J, el al. Fast m~d robust : It~'xahed- ral robots via shape dep~)siti~m manufa~'luring[ .J 7. lJlleln~ltioJl- al Journal of Robotics Research, 2002, 21 ( 10-11 ) :869-882.
  • 4Cranda]l J W, G~odrich M A, Otsen Jr 1) R, ~'t al. \'alMa- ling human-robot interacti,m schemes in multitasking environ- ments[ J ]. Systems, Mall and Cyb~rneti,'s, Ptlrt ..'~: S~stems and Humans, 1EEE Transactions ~m, 2(X}5. 35 ( 4 ) : 438- 449.
  • 5Zakrajsek J J, McKissock D B, Woytach ,I M, ,'t al. Explor~l- lion rover concepts and development challenges [ C ]//Isl Space Exploration Conference: Continuing the Voyage of Dis- eovery.. 2005: 1-23.
  • 6Aoki'T,- Murayanla Y, Hirose S. Develolmlent of a Iransl'~nn- able three - wheeled Lunar rover: Tri - Star IV[.]1. J,~m'nal of Fiehl Robotics, 2014, 31(1): 206-223.
  • 7Rohmer E, Reina G, Yoshida K. Dynamic simulation-bast-d aclion planner for a reconf~gurable hybrid leg - wheel plm~el~- 1~., expl~)ration rover[ J ]. Advanced Robotics, 2010, 24 ( 8- 9) : 1219-1238.
  • 8Cordes F.Ahrns I, Bartsch S, et al. LUNARES: lunar crater exploration with heterogeneous multi ro|,~,t systems[ J ]. Intel- ligent Service Robotics, 2011 , 4( 1 ) : 61-89.
  • 9C~rdes F, Dettmann A, Kirchner F. Locomotion mode vontrctl for a hybrid wheeled-l[eg planetary rover[ C ]//Pro~'ec'dirlgs of lhe IEEE International Conlerenee on Roboli~'s and Biomemel- ics ( 1EEE-Robio 2011 ). Phukel, 'Fhaihmd. 2011.
  • 10Space Technology Roadmaps: The Future Brought To You By NASA [EB/OL]. (2013-12-13)[2014-07-0|7. http:// www. nasa. gov/offices/oct/hom,~/roadmaps/index, html.

同被引文献69

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部