期刊文献+

基于BP神经网络和模糊推理系统的短时交通流预测 被引量:4

Short-term Traffic Flow Prediction based on BP Neural Network and Fuzzy Inference System
下载PDF
导出
摘要 本文研究短时交通流预测。短时交通流预测是智能交通系统研究和实践的必要基础。本文提出和建立了一个短时交通流量预测模型,该模型利用一个基于规则的模糊系统,非线性地组合BP神经网络模型和自适应卡尔曼滤波模型的交通流量预测结果,使得短时交通流量的预测结果更加准确可靠。该模型将传统方法和人工智能方法有机结合,一方面,利用人工神经网络强大的动态非线性映射能力,从而提高预测精度;另一方面,充分发挥卡尔曼滤波的静态线性稳定性,解决了单独使用BP神经网络进行预测时识别率不理想和可信度不高的问题。实验结果表明,本文提出的短时交通流预测模型具有较高的准确度和可靠度。 For the research and practice of modern intelligent transportation systems,short- term traffic flow prediction is an essential element. The main content of this paper is to establish a traffic prediction model for short- term traffic flow forecasting,using a rule- based fuzzy system,nonlinearly combine traffic flow forecasts resulting from an adaptive Kalman filter( KF) and BP neural network model,which is referred as KBF model. Organic combination of traditional methods and artificial intelligence methods,on one hand,makes use of the powerful dynamic nonlinear mapping ability of artificial neural network,so as to improve the prediction accuracy; On the other hand,takes full advantages of the static linear stability of the Kalman filter to solve the problem that the forecasts recognition rate is not satisfactory and the credibility is not high while using a BP neural network only. Verified by experiments,this model is useful for traffic flow forecasting with high accuracy and high reliability.
出处 《智能计算机与应用》 2015年第2期43-46,51,共5页 Intelligent Computer and Applications
基金 国家自然科学基金(61370214 60803148)
关键词 短时交通流预测 BP神经网络 模糊推理系统 卡尔曼滤波 Short- term Traffic Flow Prediction BP Neural Network Fuzzy Inference System Kalman Filter
  • 相关文献

参考文献16

  • 1Ichiro Masaki. A brief Histo' of ITS [ R]. USA: Massachusetts In- stitute of Technology, 1999.
  • 2Box G E P, Jenkins G M. Time series analysis: forecasting and con- trol [R]. San Francisc: holder Day, 1977.
  • 3AHMED S A, COOK A R. Analysis of freeway traffic time - series data by using Box- Jenkins technique [ J ]. Transpm'tatiun Research Recowt 722, 1979:1 -9.
  • 4SI'EPHANEDES Y J, MICHALOPOULOS P G, PLUM R A. Im- proved estimation of traffic flow for real - time contrul [ J ]. Transpor- tation Research Record, 1981, 79.5:28-29.
  • 5OKUTANI I. Dynamic prediction of traffic volume through kalman fil- tering theory [J]. Transportation Research, 1984:1-11.
  • 6Vythoulkas P C. Alternative Approaches to Short Term Traffic Fore- casting for Use in Driver Information Systems. Transportation and Traffic Theory [ M ]. Amsterdam : Elsevier Science Publishers, 1993 : 458 - 505.
  • 7王进,史其信.短时交通流预测模型综述[J].ITS通讯,2005,7(1):10-13. 被引量:13
  • 8I-IOBEIKA A G, KIM C K. Traffic - flow - prediction systems based on upstream traffic[ C ]//Vehicle Navigation and Information Systems Conference 1994, Yokohama: IEEE, 1994:345-350.
  • 9SMITH B L, DEMESKY M J. Traffic flow forecasting: comparison of modeling approaches [ J ]. Journal of Transportation Engineering, 1997, 123(4) : 261 -266.
  • 10ISHAK S, AL - DEEK H. Performance evaluation of short - term time- series traffic prediction model [J]. Journal of Transportation Engineering, 2002, 28(6): 490-498.

二级参考文献18

  • 1沈国江,孙优贤.城市交通干线递阶模糊控制及其神经网络实现[J].系统工程理论与实践,2004,24(4):99-105. 被引量:40
  • 2郑为中,史其信.基于贝叶斯组合模型的短期交通量预测研究[J].中国公路学报,2005,18(1):85-89. 被引量:47
  • 3杨兆升.论智能运输系统[J].中国公路学报,1995,8(4):102-110. 被引量:19
  • 4Bates J M, Granger C W J. The combination of forecasts[J]. Operational Research Quarterly, 1969, 20(1): 451-468.
  • 5Hornik K. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
  • 6Ho F, Ioannou P. Traffic flow modeling and control using artificial neural networks[J]. IEEE Control Systems Magazine, 1996, 16(5): 16-27.
  • 7Shen G J,. Kong X J. Study on road network traffic coordination control technique with bus priority[J]. IEEE Trans Syst, Man, Cerbern C, 2009, 39(3): 343-351.
  • 8杨兆升,中国公路学报,1995年,8卷,4期
  • 9王伟,人工神经网络原理.入门与应用,1995年
  • 10杨兆升,中国公路学报,1995年,8卷,4期

共引文献203

同被引文献40

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部