期刊文献+

氧含量对V_(2-x)Ti_(0.5)Cr_(0.5)NiO_x(x=0~0.35)贮氢合金组织结构和电化学性能的影响(英文) 被引量:2

Influence of Oxygen Content on Microstructure and Electrochemical Properties of V_(2-x)Ti_(0.5)Cr_(0.5)NiO_(x) (x=0~0.35) Hydrogen Storage Alloys
原文传递
导出
摘要 为了提高V基固溶体贮氢合金的充放电循环稳定性能,研究了O含量对V2-xTi0.5Cr0.5NiO x(x=0~0.35)合金的组织结构和电化学性能的影响。组织结构分析表明,当没有添加O时,合金主要由bcc结构的V基固溶体相和TiNi相组成,随着O含量的增加,合金中出现了Ti4Ni2O新相。电化学测试表明,随着O含量的增加合金电极的最大放电容量有所降低,从x=0时的366.8 mAh/g降低到x=0.35时的225.3 mAh/g,而较少氧含量时,合金电极的循环稳定性能明显得到了改善,从x=0时的69.9%增大到x=0.2时的83.7%,而后又降低到76.9%(x=0.35)。电化学动力学分析结果表明,合金的高倍率放电性能,交换电流密度和氢的扩散系数均随着O含量的增加先增加而后减小。 To improve the charge-discharge cycle stability of V-based hydrogen storage alloys, the different contents of oxygen(O)element were introduced into the V2Ti0.5Cr0.5Ni alloy, and the structures and electrochemical properties of the V2-x Ti0.5Cr0.5NiO x(x=0~0.35) alloys were investigated. The structural investigations show that the alloys with lower O content mainly consist of a V-based solid solution phase with a bcc structure and a Ti Ni-based secondary phase, while a new phase Ti4Ni2 O is observed for the alloys with higher O content. With increasing of O content, the maximum discharge capacity for the V2-xT i0.5Cr0.5NiO x(x =0~0.35)alloy electrodes decreases from 366.8 mA h/g(x=0) to 225.3 mA h/g(x=0.35), while the cycle stability of the alloy electrodes first increases from 69.9%(x=0) to 83.7%(x=0.2) and then decreases to 76.9%(x=0.35). Moreover, the high rate discharge ability, the exchange current density and the hydrogen diffusion coefficient of the alloys first increase and then decrease with increasing of O content.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第5期1052-1056,共5页 Rare Metal Materials and Engineering
基金 Science and Technology Planned Project of Sichuan Province,China(2012GZX0089,201201502)
关键词 V基贮氢合金 氧含量 显微组织 电化学性能 V based hydrogen storage alloy oxygen content microstructure electrochemical property
  • 相关文献

参考文献22

  • 1Zhao X, Ma L. IntJHydrogen Energy[J], 2009, 34:4788.
  • 2Yu X B, Wu Z, Xia B Jet al. IntJHydrogen Energy[J], 2005, 30: 273.
  • 3Sun D L, Enoki H, Gingl F et al. JAlloy Compd[J], 1999, 285: 279.
  • 4Tsukahara M, Kamiya T, Takahashi K et al. JEleetrochem Soe[J], 2000, 147:2941.
  • 5Tsukahara M, Takahashi K, Mishima T et aL JAlloy Compd[J], 1995, 224:162.
  • 6Song X P, Pei P, Zhang P L et al. JAlloy Compd[J], 2008, 455: 392.
  • 7Liu S P, Qiu G B, Liu X Jet al. Rare Metal Materials and Engineering[J], 2010, 39(2): 214 (in Chinese).
  • 8Bendersky L A, Wang K, Levin Iet aL JPower Sources[J], 2012, 218:474.
  • 9Hu W, Wang J L, Wang L D et aL Electrochimica Acta[J], 2009, 54:2770.
  • 10Wang Y Z, Zhao M S. Journal of Rare Earths[J], 2012, 30:146.

同被引文献24

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部